Ver6.3

Servo driver user manual

Safety precautions

To ensure the safe use of this product, the following safety signs must be observed so as to avoid damage to personnel or equipment.

◆ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ	Indicates that an error operation can cause danger, mild or moderate bodily harm, damage to equipment, or even fire.
危险 Danger	Represents an error operation that raises danger, causing injury or death.
0	Inhibit operation.
0	Indicates that operations must be performed.

After the arrival of the product, the following important matters must be observed when confirming, installing, wiring, running, maintaining and checking the products:

•Notes on installation:


It is strictly prohibited to install in humid and corrosive environment, flammable gas environment, near combustible and dust, metal powder environment, otherwise there may be electric shock and fire.

•Precautions for wiring:

() 警告 Notice

- ▲ The ground terminal of the servo driver must be earthed. Otherwise, an electric shock and fire may occur.
- ▲ Strictly prohibit the servo driver output terminals U, V, W connected to three-phase power supply, otherwise it may hurt and cause fire.
- ▲ 220V drive is strictly prohibited to connect to the 380V power supply, otherwise you can get an electric shock and a fire.
- ▲ Make sure the power terminals and motor terminals are tightened, or there may be a fire.

 $\bullet Considerations for runtime:$

① 警告 Notice

- ▲ Before running, you must select the correct motor type, otherwise, may be injured, damage to equipment.
- ▲ Before running, you must set the user parameters that suit the application. Otherwise, you may be harmed and damage the equipment.
- ▲ Before running, make sure that the machine can be stopped at any time, or you may get injured.

• Precautions for maintenance and inspection:

- \checkmark Do not touch the inside of servo drive, or you may get an electric shock.
- ▲ After closing the power supply, it is strictly forbidden to touch the terminal within 5 minutes. Otherwise, the residual voltage may cause an electric shock.
- Disassembly servo motor is not allowed, otherwise it is possible to get an electric shock.

Catalog

The first chapter: product inspection and installation错误!未定义书签。
1.1 Product inspection 1 -
1.2 id label 2 -
1.3 Product front panel 2 -
1.4 Driver specification 3 -
1.5 Servo motor installation 5 -
1.6 Motor rotation direction 6 -
1.7 Servo unit and motor model adaptation 6 -
The second chapter wiring错误!未定义书签。
2.1 System composition and connection 9 -
2.1.1 220V servo driver wiring diagram9 -
2.1.2 380V servo driver wiring diagram 10 -
2.1.3 Wiring instructions 11 -
2.1.4 Wire specification 11 -
2.1.5 Strong terminal description 12 -
2.2 CN1 communication interface 14 -
2.3 CN2 control interface 15 -
2.4 CN3 encoder interface 21 -
2.3 Standard connection 22 -
2.3.1 Position control wiring diagram 22 -
2.3.3 Speed / torque control wiring diagram 23 -

The third chapter shows and operates错误! 未定义书签。
3.1 Panel composition 24 -
3.1.1 Display and button 24 -
3.2 Mode work change 24 -
3.3 Monitoring mode (Dn) operation 25 -
3.4 Auxiliary mode (Fn) operation 25 -
3.5 User parameter mode (Pn) operation 35 -
The fourth chapter, Pn function parameter错误! 未定义书签。
4.1 Parameter settings panel action 37 -
4.2 Parameter list 37 -
4.2.1 System control parameter 37 -
4.2.2 Position control parameter 41 -
4.2.3 Speed control parameter 43 -
4.2.4 Torque control parameter 45 -
4.2.5 Extended control parameter 47 -
4.3 Parameter detail 49 -
4.3.1 system parameter49-
4.3.2 Position control parameter76-
4.3.3 Speed control parameter86-
4.3.4 Torque control parameter94-
4.3.5 Extended control parameter100-
4.4 Port function detail

4.4.1 SigIn input port function detailed	105 -
4.4.2 SigOut output port function detailed	109 -
The fifth chapter monitoring parameters and operation错误!	未定义书签。
5.1 Monitor panel operation	111 -
5.2 List of monitoring parameters	111 -
The sixth chapter, alarm and treatment错误!	未定义书签。
6.1 Alarm clearing operation	112 -
6.2 Alert content and Countermeasures	113 -
6.3 Other fault phenomena and treatment measures	119 -
The seventh chapter is Modbus serial communication错误!	未定义书签。
7.1 Introduction to Modbus Communications	122 -
7.1.2 Coding meaning	122 -
7.1.3 data structure	122 -
7.2 Communication protocol architecture	123 -
7.3 Common command code	124 -
7.3.1 Read multiple registers	124 -
7.3.2 Write single register	126 -
7.3.3 Diagnosis	127 -
7.3.4 Write multiple registers	129 -
7.3.5 Check code calculation	132 -
7.3.6 Exception code	134 -
7.4 Servo parameter, status information, communication address	135 -

The eighth chapter, operation and adjustment	错误!未定义书签。
8.1 Inching operation	136 -
8.2 Push-button speed control	136 -
8.3 Gain tuning	137 -
8.3.1 System inertia identification	138 -
8.3.2 Automatic gain adjustment	140 -
8.3.3 Manual gain adjustment	141 -
8.3.4 Jitter suppression method	142 -
The ninth chapter, servo unit control structure and example	mple错误!未定义书签。
9.1 Position control example	144 -
9.1.1 Position control structure diagram	144 -
9.1.2 Example of position control	144 -
9.2 Example of speed control	144 -
9.2.1 Speed control structure diagram	144 -
9.2.2 Example of speed control	145 -
9.3 Torque control example	145 -
9.3.1 Torque control structure diagram	145 -
9.3.2 Example of torque control	145 -
9.4 Electronic gear ratio calculation	146 -
9.5 Example of electronic gear ratio	147 -
9.5.1 ball screw	147 -
9.5.2 Round table	148 -

9.5.3 Belt + pulley	148 -
The tenth chapter, the use of absolute servo unit	错误!未定义书签。
10.1 Absolute data output mode	150 -
10.2 Absolute data transceiver timing	151 -
10.3 ABZ pulse frequency division output	154 -
10.4 Initialization of absolute encoder	155 -
10.5 Installation of absolute encoder batteries	155 -
appendix	错误!未定义书签。
Appendix A gain switching	错误!未定义书签。
Appendix B control mode switching	错误!未定义书签。
B.1 Position / speed control mode switching	157 -
B.2 Position / torque control mode switching	159 -
B.3 Speed / torque control mode switching	160 -
Appendix C servo drive operation timing	错误!未定义书签。
C.1 ON/OFF timing of motors at rest	161 -
C.2 ON/OFF timing of motor operation	161 -
C.3 Timing of alarm when servo ON	162 -
Appendix D electromagnetic brake	错误!未定义书签。
Appendix E regenerative braking resistor	错误!未定义书签。
Appendix F origin regression	错误!未定义书签。
F1. 1 Origin regression operation step	163 -
F1. 2 Origin regression trigger timing	164 -

F1.3 Origin regression, combination model, time series		166 -
Appendix G internal position control	错误!	未定义书签。
Appendix H fixed length displacement interruption	错误!	未定义书签。

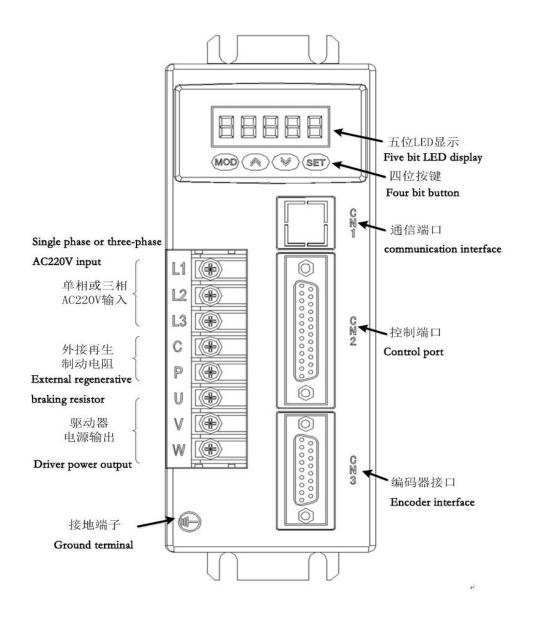
The first chapter: product inspection and installation

1.1 Product inspection

The products in the factory have done a complete functional test, in order to prevent the process of transporting products caused by negligence are not normal, please check the following items after unpacking:

- Check whether servo drive and servo motors are the same as those ordered.
- Check the servo driver and servo motor for damage and scratching. Please do not wire or send electricity when causing damage in transit.
- Check that the servo drive and servo motor are loose or loose. Is there a loose screw, whether the screws are not locked or broken.
- Check that the rotor shaft of the servo motor can rotate smoothly by hand. The motor with the brake can not be rotated directly.

If any of the above is out of order or abnormal, please contact the distributor immediately.


1.2 id label

	引服驱动器 RVO DRIVER	● 危险
型号	AASD-30A	请按照说明书安装 、 接线、使用,务必可靠 接地。
电压	AC220V/50-60HZ	高压电源
输出电流	30A	\vee
生产日期		通电时及切断电源5分钟 之内,请不要对驱动器进行 拆装、以防触电。

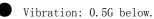
Danger: Please follow the instructions, installation, wiring and use, be sure to reliably grounding

High-voltage power supply: Please don't disassemble the driver during the 5 minutes when the power is on and the power is cut off, so as to prevent electric shock

1.3 Product front panel

1.4 Drive specification

Input pov	wor	① Single phase or three-phase AC220V -15 to +10% 50 / 60Hz				
input por	WCI	 Single phase of three phase AC220V 15 to +10% 50 / 60Hz Single phase or three-phase AC380V -15 to +10% 50 / 60Hz 				
	temper	Work: store at 0^{55} DEG C: -20° 80 DEG C				
environment	ature					
•	humid	Less than 90% (without condensation)				
	ity					
	Vibra tion	Less than 0.5G (4.9m/S2), 10 to 60Hz (non continuous running)				
control m	ıode	IGBT PWM 正弦波控制 power pwm 正弦波控制				
		① Torque mode ④Position / speed mode				
control mo	odel	② Speed mode ⑤Position / torque model				
		③ Location mode ⑥Speed / torque mode				
		Servo enable, alarm reset, forward drive, inhibit and reverse drive				
		prohibited, External forward torque limit, external reverse torque				
		limit, emergency stop, Zero speed clamp, internal speed command				
		select 1, internal speed command select 2Internal speed command				
		select 3, internal torque command select 1, Internal torque command				
		select 2, control mode switching, gain switching, The choice of the				
		electronic gear molecule 1, the electronic gear molecule selection				
		2, the instruction counter, The position deviation is cleared, the				
control inp	put	pulse input is forbidden, the proportional control and the origin				
		return trigger, Origin regression reference point, internal				
		position selection 1, internal position selection 2, Trigger an				
		internal position instruction, pause an internal position command,				
		and select an internal and external position commandFixed length,				
		displacement interruption, fixed length unlocking				
		Alarm detection, servo ready, emergency stop detection, positioning				
		completed, Speed arrives, arrives at the predetermined torque, the zero				
Control ou	itput	speed examination, the servo motor electrify, Electromagnetic brake, origin				
		return, position approach, torque limit, speed limit, Tracking torque command				
		arrives				
Encoder fee	edback	① 2500 line incremental encoder				
		② 17 bit absolute encoder				
communicatio	n mode	① RS-232 ②RS-485				
Display and op	eration	① 5 LED display ②4/5 keys				
Braking m		Energy consumption braking by built-in / external braking resistor				


Cooling method	Air cooling (heat conduction mould, high speed strong cooling fan)
Power range	≤10KW

1.5 Servo motor installation

Installation environment condition

Working environment temperature: 0^{40} degrees centigrade; working environment temperature: 80% below (without dew).

Storage environment temperature: $-40 \sim 50$ degrees; storage environment humidity: less than 80% (without condensation).

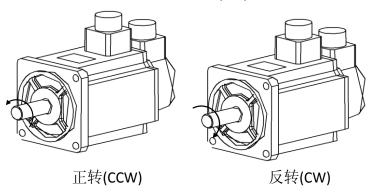
Well ventilated place with little moisture and dust.

non corrosive, fire gases, oil and gas, cutting fluid, iron powder and so on.

no water vapor and direct sunlight.

Installation method

horizontal installation: to avoid water, oil and other liquids from the motor outlet end into the motor, please put cable outlet below.


Vertical mounting: if the motor shaft is mounted upwards and attached to the reducer, attention shall be paid to preventing the grease in the reducer from penetrating into the motor through the motor shaft.

The extension of the motor shaft needs to be sufficient. If the amount of the extension is insufficient, it will vibrate easily when the motor is moving.

The installation and disassembly of the motor, with a hammer percussion motor do not, otherwise easy to cause damage to the motor shaft and the encoder.

1.6 Motor rotation direction

From the motor load side, the motor shaft extends counterclockwise (CCW) for the positive rotation, and the clockwise rotation (CW) is reversed.

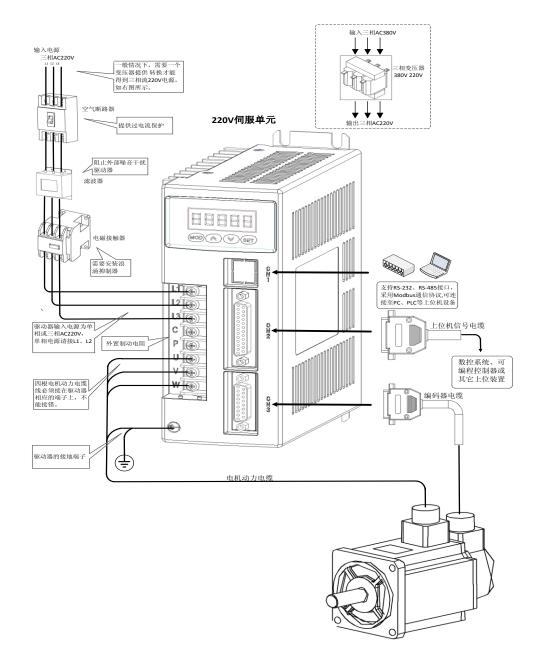
1.7 Servo unit and motor model adaptation

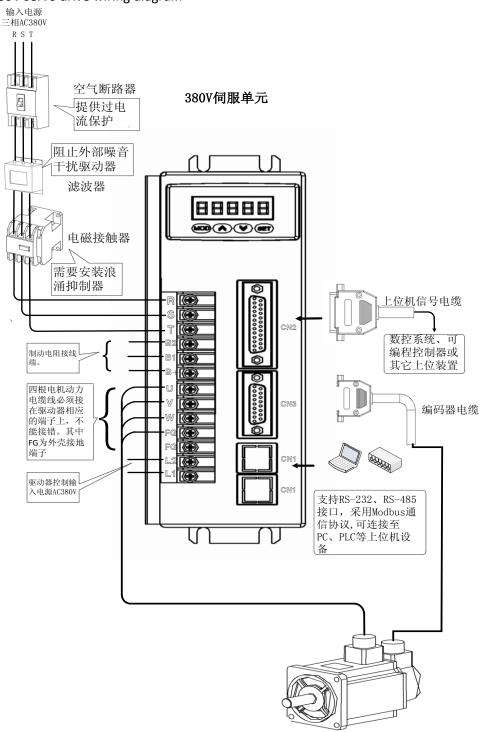
Motor model	Pn001	Rated	Rated torque	Rated	KRS	KRS	KRS	KRS	KRS
		speed	(N. M)	power	15	20A	30A	50A	75A
		(r/min)		(KW)					
60st_m00630	0	3000	0.6	0.2	\checkmark	\checkmark	\checkmark		
60st_m01330	1	3000	1.3	0.4	\checkmark	\checkmark	\checkmark		
60st_m01930	2	3000	1.9	0.6	\checkmark	\checkmark	\checkmark		
80st_m01330	3	3000	1.3	0.4	\checkmark	\checkmark	\checkmark		
80st_m02430	4	3000	2.4	0.75	\checkmark	\checkmark	\checkmark		
80st_m03520	5	2000	3.5	0.73	\checkmark	\checkmark	\checkmark		
80st_m04025	6	2500	4	1	\checkmark	\checkmark	\checkmark		
90st_m02430	7	3000	2.4	0.75	\checkmark	\checkmark	\checkmark		
90st_m03520	8	2000	3.5	0.73	\checkmark	\checkmark	\checkmark		
90st_m04025	9	2500	4	1	\checkmark	\checkmark	\checkmark		
110st_m02030	10	3000	2	0.6	\checkmark	\checkmark	\checkmark		
110st_m04020	11	2000	4	0.8	\checkmark	\checkmark	\checkmark		
110st_m04030	12	3000	4	1.2		\checkmark	\checkmark		

The 220V drive model and the motor model adaptation sheet are as follows:

110st_m05030	13	3000	5	1.5			\checkmark		
110st_m06020	14	2000	6	1.2	\checkmark	\checkmark	\checkmark		
110st_m06030	15	3000	6	1.8			\checkmark		
130st_m04025	16	2500	4	1	\checkmark	\checkmark	\checkmark		
130st_m06015	17	1500	6	1	\checkmark	\checkmark	\checkmark		
130st_m05025	18	2500	5	1.3		\checkmark	\checkmark		
130st_m06025	19	2500	6	1.5			\checkmark		
130st_m07725	20	2500	7.7	2			\checkmark		
130st_m10010	21	1000	10	1	\checkmark	\checkmark	\checkmark		
130st_m10015	22	1500	10	1.5		\checkmark	\checkmark		
130st_m10025	23	2500	10	2.6			\checkmark	\checkmark	\checkmark
130st_m15015	24	1500	15	2.3			\checkmark		
130st_m15025	25	2500	15	3.8				\checkmark	\checkmark
150st_m15025	26	2500	15	3.8				\checkmark	\checkmark
150st_m15020	27	2000	15	3				\checkmark	\checkmark
150st_m18020	28	2000	18	3.6				\checkmark	\checkmark
150st_m23020	29	2000	23	4.7				\checkmark	\checkmark
150st_m27020	30	2000	27	5.5					\checkmark
180st_m17215	31	1500	17.2	2.7				\checkmark	\checkmark
180st_m19015	32	1500	19	3			\checkmark	\checkmark	\checkmark
180st_m21520	33	2000	21.5	4.5				\checkmark	\checkmark
180st_m27010	34	1000	27	2.9				\checkmark	\checkmark
220st_m67010	35	1000	67	7					\checkmark
180st_m35015	37	1500	35	5.5					\checkmark
40st_m00330	39	3000	0.3	0.1	\checkmark	\checkmark	\checkmark		

The 380V drive model and the motor model adaptation sheet are as follows:


	Pn001	Rated	Rated	Rated	KRS	KRS	KRS	KRS
Motor model		speed	torque	power	25	40	50	75
		(r/min)	(N. M)	(KW)				
180st_m48020	46	2000	48	10			\checkmark	\checkmark
180st_m19020	47	2000	19	4		\checkmark	\checkmark	\checkmark
180st_m35020	48	2000	35	7.3		\checkmark	\checkmark	\checkmark
180st_m27020	49	2000	27	5.6		\checkmark	\checkmark	\checkmark


180st_m48015	50	1500	48	7.5		\checkmark	\checkmark
180st_m19015	51	1500	27	3	\checkmark	\checkmark	\checkmark
180st_m21520	52	2000	27	4.5	\checkmark	\checkmark	\checkmark
180st_m27010	53	1000	27	2.9	\checkmark	\checkmark	\checkmark
180st_m27015	54	1500	27	4.3	\checkmark	\checkmark	\checkmark
180st_m35010	55	1000	35	3.7	\checkmark	\checkmark	\checkmark
180st_m35015	56	1500	35	5.5	\checkmark	\checkmark	\checkmark

The second chapter wiring

2.1 System composition and connection

2.1.1 220V servo drive wiring diagram

2.1.2 380V servo drive wiring diagram

2.1.3 Wiring instructions

Wiring notes:

Wiring materials are used in accordance with wire specifications.

Cable length, instruction cable 3M, less than 20m of encoder cable.

The 220V drive power L1, L2, L3 power supply wiring is correct, please do not connect to the 380V power supply.

The 380V drive power R, S, T power supply wiring is correct, please do not connect to the 220V power supply, otherwise the motor is not functioning properly.Control power L1, L2 must be normal access, otherwise the drive can not start running.

Motor output U, V, W terminals phase sequence, and the corresponding terminals must correspond to the motor. If the connection is wrong, the motor may not turn or drive, damaging the drive. The motor can not be reversed by replacing the three-phase terminal, which is quite different from the asynchronous motor.

must be reliable grounded and single point grounding.

The relay that is mounted on the output signal must be connected correctly in the direction of the diode it is used for, otherwise it will cause a fault and cannot output the signal.

in order to prevent the error caused by noise, please add the insulation transformer and noise filter on the power supply in the same wiring tube.

Please install non fusing circuit breaker so that the driver can cut off the external power supply in time.

2.1.4 Wire specification

Connection terminal	Symbol	Wire specification
Power cord	U, V, W	0.75~2.5mm ²
Motor connecting terminal		$0.75{\sim}2.5$ mm ²
Ground terminal		0.75~2.5mm ²

Control signal terminal	C N 2	≥0.12 mm ² (AWG26), Shielded wire
Encoder signal terminal	C N 3	≥0.12 mm ² (AWG26), Shielded wire

The encoder cable must be twisted pair. If the encoder cable is too long (>20m), the encoder will have insufficient power supply, and the power and ground can be connected by multiple wires or using a thick wire.

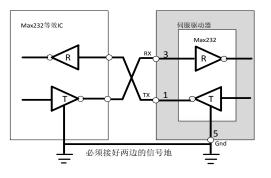
2.1.5 Strong terminal description

● 220V drive terminals

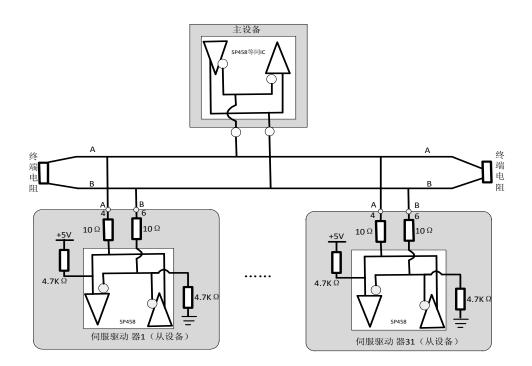
Name	Terminal symbol	Detailed description
	L1、L2、L3	Connect external AC power, three-phase 220VAC
Main circuit		-15% to $+10%$ $50/60$ Hz
power supply		The single-phase power supply shall be
		connected to the L1 and L2 terminals
	U	Output to the motor U phase power supply
	V	Output to the motor V phase power supply
Motor connecting	W	Output to the motor W phase power supply
terminal		
Ground terminal		Motor housing earthing terminal
		Driver ground terminal

• 380V drive terminals

Name	Terminal symbol	Detailed description
Control circuit	L1、L2	Connect an external AC power supply
power supply		Three-phase 380VAC -15% to +10% $50/60\mathrm{Hz}$
		If internal braking resistor is used, short
		B2, B1 shall be used. If an external braking
Braking resistor	B1、B2、B+	resistor is used, the connections between the
terminal		B2 and B1 terminals must be removed, and the
		brake resistance shall be mounted on the B2
		and B+ terminals.
Motor connecting	U	Output to the motor U phase power supply
terminal	V	Output to the motor V phase power supply
	W	Output to the motor W phase power supply
Ground terminal	FG	Motor housing earthing terminal
	FG	Driver ground terminal


2.2 CN1 communication interface

2.2.1 CN1 port signal definition


	Name	Pin number	function
1 2	+5V	2	5V
Tx +5V	GND	5	ground
$3(\bigcirc \operatorname{Rx} \square A \bigcirc) 4$	Тх	1	RS-232 Sending end
5 OGnd BO 6	Rx	3	RS-232 receiving end
	А	4	RS-485 A
	В	6	RS-485 B

2.2.3 CN1 port type

1. RS-232 interface

2. RS-485 interface

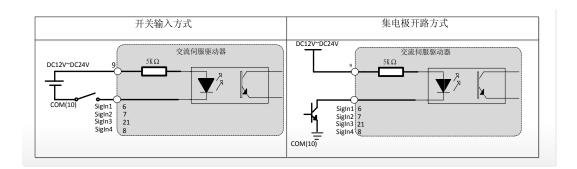
• When using RS485 communication, at most 31 servo drivers can be connected at the same time, and 485 terminals of the network need to be connected with a terminal resistor of 120 ohm respectively. To connect more devices must be used to expand the number of connected repeaters.

2.3 CN2 control interface

The CN2 control signal terminal provides the signal needed for the connection with the upper controller, and uses the DB25 DB44 socket:

- •4 programmable inputs (Standard Version), 10 programmable inputs (advanced version);
- ●4 programmable outputs (Standard Version), 5 programmable outputs (Advanced Edition);
- Analog command input;
- Pulse command input;
- Encoder signal input;
- Encoder frequency division output signal;

2.3.1 CN2 port signal definition


	Pin	Interface	Name	function
		number		
OL	DC12~24V	9	The power and	The input and output control signals are
	СОМ	10	ground of the	input power and ground
20140			control signal	
30^{150}_{160}	SigIn1	6	Input instruction	Input instruction signal. The function
⁴ O ₁₇₀	SigIn2	7	signal	specified by each input port at the
	SigIn3	21		factory:
70200	SigIn4	8		SigIn1: Servo enable
⁹ 0 ²¹ 0				SigIn2: Alarm reset
100230				SigIn3: Clearance of position deviation
120240				SigIn4: Pulse input inhibit
3020	SigOUT1	11	Output instruction	Output instruction signal. The function
	SigOUT2	23	signal	specified by each output signal port at
	SigOUT3	12		the factory:
	SigOUT4	24		SigOUT1: Servo enable
				SigOUT2: Alarm detection
				SigOUT3: Location complete
				SigOUT4: Emergency stop detection
	PV	2	Command pulse	PV: open collector input power
	PP+	3	input port	The instruction pulse can be input in
	PP-	14		three different ways:
	PD+	4		1: Command direction and pulse input
	PD-	5		2: Clockwise / anticlockwise pulse
				input
				3: Quadrature pulse input with phase
				difference of 90 degrees
	PA+	20	Encoder signal	The output port of the encoder signal
	PA-	19	output	(ABZ). Through the parameter setting,
	PB+	18		the AB signal can be divided into

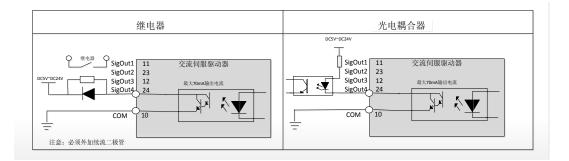
PB-	17		frequency division output and logic
PZ+	15		fetch reverse output.
PZ-	16		
OZ	22		
GND	1		
Vref	25	Analog input	Analog voltage input port. Speed or
AGND	13		torque control used to receive speed or
			torque instructions. Voltage input range
			-10V~+10V.

2.2.3 CN2 port type

1. Digital input interface

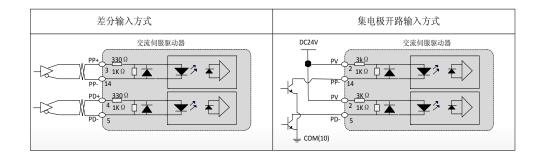
The digital input interface circuit can be controlled by switch, relay, collector, open circuit triode, photoelectric coupler, etc.. The relay needs to select low current relay to avoid the bad contact. External voltage range DC12V to 24V.

2. Digital output interface


The output circuit adopts Darlington photoelectric coupler, and can be connected with relay and photoelectric coupler.

Matters needing attention:

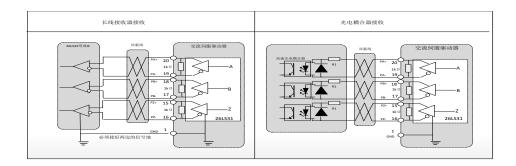
• The external power supply is provided by the user, but it must be noted that if the polarity of the power is reversed, the servo drive may be damaged.


• The output is in the form of an open collector, the maximum current is 70mA, and the maximum voltage of the external power supply is 25V. If the limit request or output is connected directly to the power source, the servo drive may be damaged.

• If the load is an inductive load such as a relay, the freewheeling diode must be connected in parallel at both ends of the load. If the freewheeling diode is turned on, the servo drive may be damaged.

3. Position pulse instruction interface

There are two ways to drive differential drive and one end drive. Differential drive connection is recommended. Twisted pair should be used for wiring.

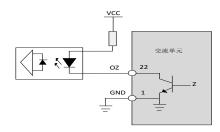


• In the differential input mode, the proposed use of AM26LS31 similar line driving chip; in order to make the pulse data transmission have very good anti-interference ability, recommend the use of differential drive mode; the maximum input pulse frequency 550kHz (kpps).

• Under the open collector input mode, the maximum input pulse frequency is 200kHz (kpps).

4. Encoder signal differential drive output

After the encoder signal is divided into frequency, it is output to the upper controller through line driver (26LS31).



•When the long line receiver is received, the driver encoder signal (GND) must be connected to the upper controller signal.

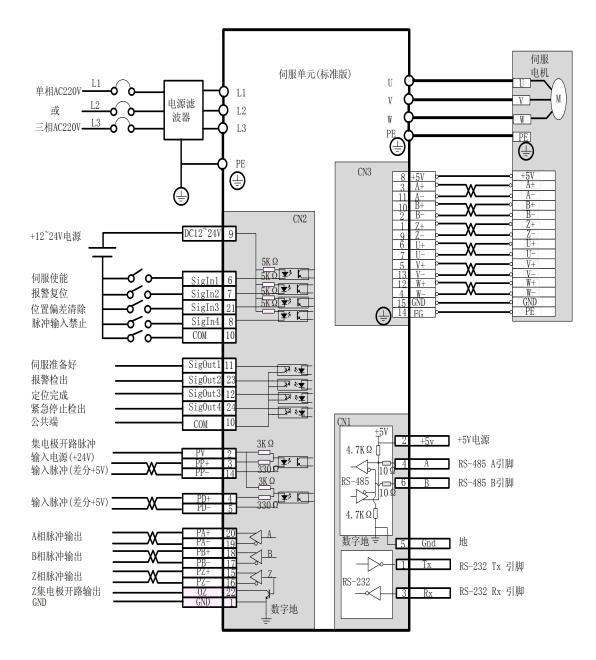
•When the optocoupler is received, the upper controller uses a high-speed optocoupler (for example, 6N137), and the current limiting resistor R1 has a value of about 220.

5. Encoder ABZ signal open collector output

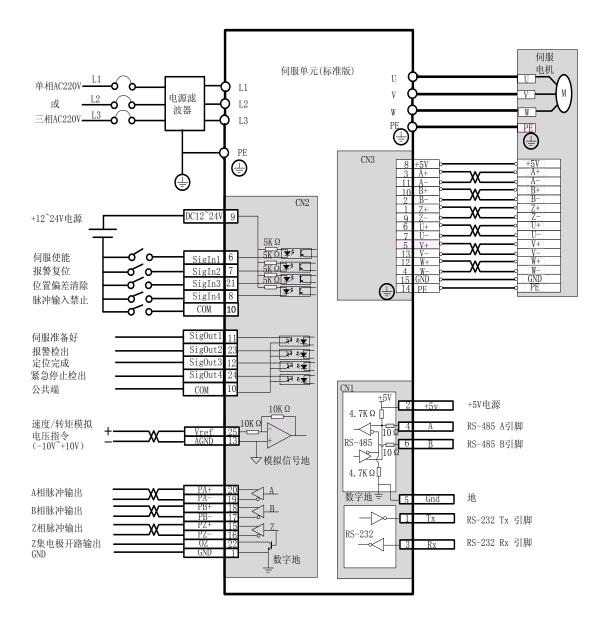
The servo drives the ABZ signal of the encoder in an open collector mode. Since the Z pulse width is narrow, the upper computer should be received by high-speed optocoupler.

• VCC maximum voltage 30V, output current maximum 50mA.

• Only the advanced servo unit supports the open collector output function of the A and B signals.


2.4 CN3 encoder interface

2.4.1 CN3 encoder signal definition


[Encoder	Pin number	Name
		8	+5v
		15	GND
		3	A+
		11	A–
		10	B+
		2	B-
		1	Z+
	Incremental	9	Z-
	encoder	6	U+
		7	U–
		5	V+
		13	V-
		12	W+
		4	W-
		14	PE
	Absolute	4	SD+
	encoder	3	SD-
		14	FG
		15	GND

2.3 Standard connection

2.3.1 Position control wiring diagram

2.3.3 Speed / torque control wiring diagram

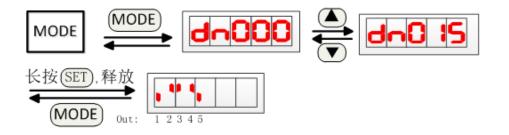
The third chapter shows and operates

3.1 Panel composition

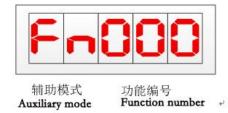
3.1.1 Display and button

	MOD	3888
Key	Key name	Function
MODE	Mode select	1 Mode switching
	key	2 Return to higher directory
	Digital add key	Add numbers, Long press with repeat
		effect
▼	Digital reduction	Digital reduction, Long press with repeat
	key	effect
SET	Shift key	1 Digital shift
		2 Set the setting (press for 1 seconds)
		3 End the parameter setting (press for 1
		seconds I)

Note: if the 5 decimal points of the display screen are all flashing, the alarm will be generated by the alarm. After the alarm has to be cleared, the drive will work properly.


3.2 Mode switching

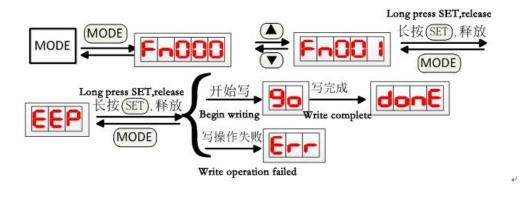
Description: when the screen shows Fnxxx, Dnxxx, Pnxxx, at this time in the top directory, mode key for mode switching function, can be switched directly to other mode, otherwise, mode key to return to the upper directory function.


3.3 Monitoring mode (Dn) operation

Example: check dn015 monitoring parameters, at this time, sigOut1 and sigOut5 port is low, sigOut2, sigOut3, sigOut4 port is high.

3.4 Auxiliary mode (Fn) operation

÷

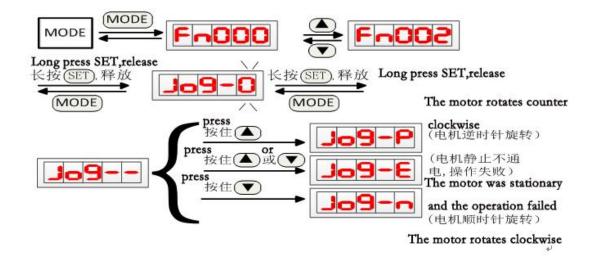

Auxiliary function list

NO.	Description
Fn000	Alarm record query
Fn001	User parameters are permanently written. If the user sets the parameters in the
	Pn000~Pn280, the driver must load the user's modified parameters for the next time
	they are powered on. The parameter is written to the internal EEPROM chip. After
	performing the operation, it takes about 5 seconds to write all the parameters into the
	EEPROM.
Fn002	JOG commissioning operation
Fn003	Clear the currently detected alarms
Fn004	Returns the default factory value of the Pn000~Pn280 parameter in the parameter
	list, based on the Pn000 settings.
Fn005	Clear position deviation
Fn006	The SigOut port forces output, and the force state is valid only for this operation.
	0: SigOut all ports cancel mandatory status.
	1: SigOut all ports forced output high level.
	2: SigOut all ports forced output low.
Fn007	Analog torque command voltage correction
Fn008	Analog speed command voltage correction
Fn009	busbar voltage crrection
Fn010	Temperature correction
Fn011	Alarm record initialization
Fn012	Encoder zeroing
Fn015	Absolute encoder, multi circle data, zeroing
Fn016	Absolute encoder, alarm reset
Fn018	Load inertia estimation

3.4.1.1 Fn000 alarm function inquiry

3.4.1.2 Fn001 user parameters are permanently written

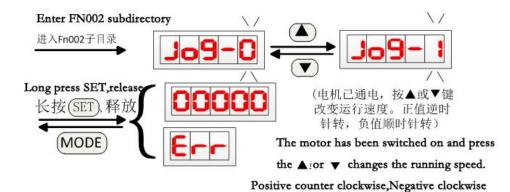
Note 1: if the last operation shows that it may be a write data operation within the drive, please

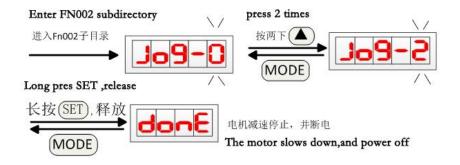

wait a few seconds to try again.

Note 2: you must wait for writing to complete the power failure, otherwise, after rebooting, may cause storage chip content damage (AL-01 alarm).

3.4.1.3 Fn002 commissioning operation

0: Inching mode

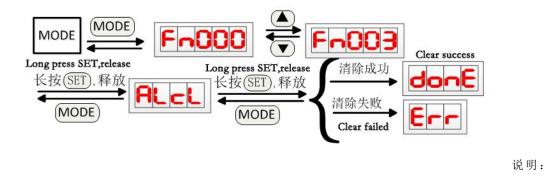

3


Jog running speed and acceleration and deceleration time can be set by the following parameters:

Pn177	JOG speed	0~5000	200	r/min
Pn178	JOG Acceleration time	5~ 10000	100	ms
Pn179	JOG Deceleration time	5~ 10000	100	ms

1: Speed regulation mode

2: Exit speed regulation mode

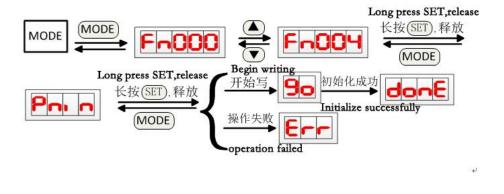

Operation mode	Description
0	Inching model. Press ▲ or ▼key motor will rotate clockwise or
	counterclockwise; release \blacktriangle or \blacktriangledown key, the motor will stop rotating in the
	energized state.
1	Enter the speed control mode, the motor power work. Driver in speed loop mode,
	running speed by the key input \blacktriangle or \blacktriangledown . During the operation of the motor,
	other menu operations can be carried out. If the motor is stopped rotating,
	enter the Jog_2 mode.
2	Exit the speed regulation mode and the motor is out of power.

Explanation: if the operation is displayed **Ingree** or **Err** possible reasons for:

1: the motor is in the enabling or rotating state. The motor must be in a non working state prior to the JOG commissioning operation. During commissioning, the servo driver control interface does not receive any control lines.

2: servo drive alarm occurred, and the alarm is not cleared.

3.4.1.4 Fn003 alarm cleanup operation

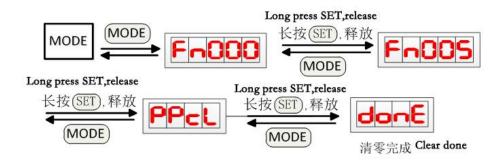


Explanation: when the final cleanup fails, shows it is cleared only after power

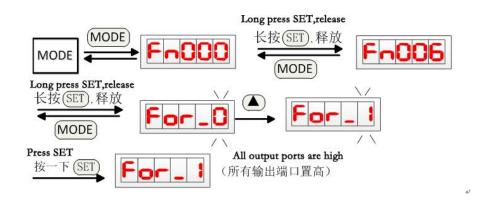
on.

An ala	arm that can be cleared by clearing	The	alarm can be cleared before power on
	operations		
AL02	low voltage	AL01	Memory exception
AL05	1 Overload 1	AL03	Overvoltage
AL07	Motor speed is too high	AL04	Intelligent power module exception
AL08	Radiator overheating	AL06	2 Overload 2
AL10	Too high pulse frequency	AL09	Encoder exception
AL11	The position pulse deviation is	AL13	CPU internal fault
	too large		
AL12	The current sampling loop may be	AL17	Encoder signal frequency division output
	damaged		abnormal setting
AL14	Emergency shutdown	AL18	电机代码设置不当 Improper motor code
			setting
AL15	Drive forbidden exception	AL20	Function port repeat settings
AL16	Brake mean power overload	AL21	Memory contents are completely destroyed
AL19	Power module overheating	AL22	Watchdog timer overflow
		$AL31^{\sim}$	Absolute encoder related alarm
		AL43	

3.4.1.5 Fn004 parameter initialization operation


Note 1: if the last operation is displayed **Err**, the possible cause of it is shown:

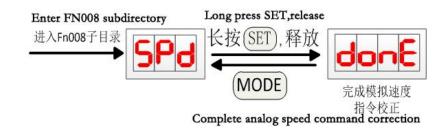
1: the driver is performing write operations.


2: parameter Pn000 has no open parameter initialization function.

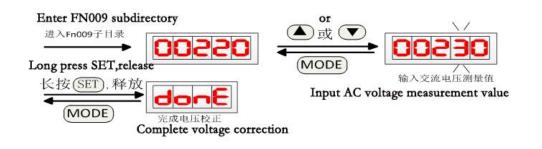
Note 2: you must wait for writing to complete the power failure, otherwise, after rebooting, may cause storage chip content damage (AL-01 alarm).

3.4.1.6 Fn005 position offset reset operation

3.4.1.7 Fn006 port forced output

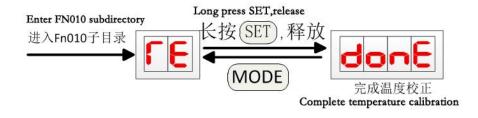

Parameter selection	Description
0	Cancel mandatory status
1	All SigOut ports are forced high
2	All SigOut ports are forced low

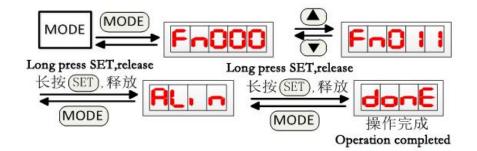
3.4.1.8 Fn007 analog torque command voltage correction


Note 1: before the calibration operation, the analog voltage input port Vref (25 pin) of the CN2 is connected to the reference zero voltage.

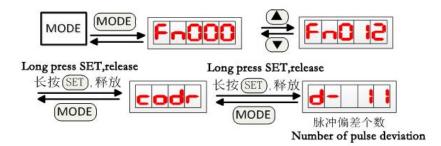
3.4.1.9 Fn008 analog speed command voltage correction

Note 1: before the calibration operation, the analog voltage input port Vref (25 pin) of the CN2 is connected to the reference zero voltage.

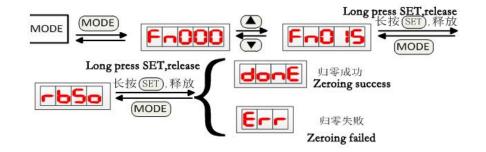

3.4.1.10 Fn009 bus voltage correction


- 32 -

Note 1: when correcting, the control power supply and the power supply must be connected and the AC voltage inputted by the driver is measured and input into the operation.

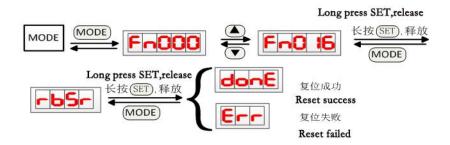

3.4.1.11 Fn010 temperature correction

3.4.1.12 Fn011 alarm record initialization operation


3.4.1.13 Fn012 encoder zeroing

Before setting the zero operation, confirm the motor code Pn001 setting value is consistent with the actual motor model, otherwise it may cause the motor current is too large, damage the motor. Zero time, no internal enable or external enable motor, the motor will be several laps, and then lock the zero position. When the number of pulses displayed is less than 10, the motor is aligned to zero.

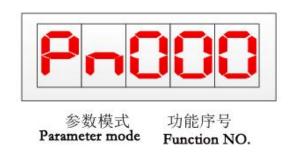
Note 1: if the motor is very hot, it must cool down for a period of time.


Note 2: absolute encoder, after the zero adjustment is completed, have to wait a few seconds to complete the data written to power off.

3.4.1.14 Fn015 absolute encoder multi turn data zeroing

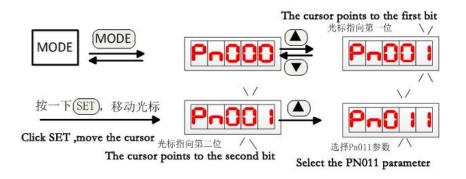
If zero success, multi ring data will be set to 0, while all the latch encoder alarm is reset; on the other hand, may be due to the encoder communication fault alarm or the motor is enabled to multi circle data zero operation.

3.4.1.15 Fn016 absolute encoder alarm reset


If the encoder alarm reset is successful, all latch encoder alarms are reset; otherwise, there may be a communications malfunction alarm or a motor in the enable state, resulting in no reset operation.

3.4.1.16 Fn018 load inertia estimation

3



3.5 User parameter mode (Pn) operation


• Select parameter number

Example: select the Pn011 parameter.

Parameter editing

Example: the current value of the Pn178 parameter is changed from 100 to 200, and the following is the specific operation:

Note: after editing the parameter, please wait for 5 seconds to power off.

The fourth chapter, Pn function parameter

4.1 Parameter settings panel action

See the "user parameter mode operation" in chapter third

4.2 Parameter list

- The number of column, if there is a symbol ▲, parameter setting, to be re energized to take effect; if there is a sign ◆that said, parameter setting, re enable the motor parameters to take effect; if there is no special symbols, immediately effect.
- In the model column, "All" is indicated for torque, speed, position control, T, for torque control, S for speed control, and P for position control.
- Parameters must be carefully set. Improper setting may cause motor to run unstable.

NO.	Name	Range of	Defau	Unit	apply
		values	1t		
			value		
Pn000	Parameter editing and	0~3	1	_	A11
	initialization				
Pn001▲	Motor code	$0^{\sim}70$	7	-	A11
Pn002▲	control mode	0~5	2	-	A11
Pn003	Servo enable mode	0~1	0	-	A11
Pn004	Servo disconnect enable shutdown	0~2	0	-	A11
	mode				
Pn005	Breaking enable deceleration time	$5^{\sim}10000$	100	ms	A11
Pn006	Use / do not use positive and	0~3	0	-	A11
	negative drive prohibited				
Pn007	Positive / reverse drive, no	0~10000	60	ms	A11
	stopping, deceleration time				
Pn008	Internal forward torque limit (CCW)	0~300	300	%	A11
Pn009	Internal reverse torque limit (CW)	-300~0	-300	%	A11
Pn010	External forward torque limit (CCW)	0~300	300	%	A11
Pn011	External reverse torque limit (CW)	-300~0	-300	%	A11
Pn012	Forward (CCW) torque overload 1	$0^{\sim}300$	200	%	A11

4.2.1 System control parameter

	alarm level				
Pn013	Reverse (CW) torque overload 1 alarm	$-300^{\sim}0$	-200	%	A11
	level				
Pn014	Torque overload 1 alarm detection	1~900	250	100ms	A11
	time				
Pn015	Overload 2 detection time	1~300	80	100ms	A11
Pn016▲	DA Molecular DA for frequency	$1^{\sim}127$	1	_	A11
	division output of an incremental				
	encoder				
Pn017▲	The denominator of frequency	$1^{\sim}127$	1	_	A11
	division output of incremental				
	encoder DB				
Pn018▲	Encoder output pulse AB phase logic	0~1	0	_	A11
	inversion				
Pn019▲	Rated current setting	0.0 [~] 100.0	0	Arms	A11
Pn020▲	Rated speed setting	$0^{\sim}5000$	0	r/min	A11
Pn021	Reach a predetermined speed	$0^{\sim}5000$	500	r/min	A11
Pn022	Arrive at a predetermined speed,	$0^{\sim}5000$	30	r/min	A11
	lag, compare difference				
Pn023	Arrive at a predetermined speed,	0~2	0	_	A11
	direction of detection				
Pn024	Arrival torque	0~300	100	%	A11
Pn025	Lag difference between arrival	0~300	5	%	A11
	torque and preset torque				
Pn026	Reach the desired torque direction	0~2	0	_	A11
Pn027	Zero speed detection amplitude	0~1000	10	r/min	A11
	setting				
Pn028	Zero speed test return error	$0^{\sim}1000$	5	r/min	A11
Pn029	Zero speed detection point of motor	0~1000	5	r/min	A11
	electromagnetic brake				
Pn030	Delay time of electromagnetic brake	0~2000	0	ms	A11
	when the motor is stationary				
Pn031	When the motor is running, the	0~2000	500	ms	A11
	electromagnetic brake wait time				
Pn032	The speed of the electromagnetic	0~3000	30	r/min	A11

	brake when the motor is running				
Pn033	Origin regression trigger mode	0~3	0	_	A11
Pn034	Origin regression reference point mode	0~6	0	_	A11
Pn035	Origin regression origin mode	0~2	0	_	A11
Pn036	Origin position offset high	-9999~9999	0	万个	A11
Pn037	Origin position offset low	-9999~9999	0	个	A11
Pn038	Origin regression first speed	$1^{\sim}3000$	200	r/min	A11
Pn039	Origin regression second speed	$1^{\sim}3000$	50	r/min	A11
Pn040	Origin regression acceleration time	$5^{\sim}10000$	50	ms	A11
Pn041	Origin regression deceleration time	$5^{\sim}10000$	50	ms	A11
Pn042	Origin on time delay	0~3000	100	ms	A11
Pn043	The origin regression completes the signal delay	5~3000	80	ms	A11
Pn044	Origin return instruction execution mode	0~1	0	-	A11
Pn045	Gain switching selection	0~5	0	_	A11
Pn046	Gain switching level	0~30000	80	_	A11
Pn047	Gain switching back difference	0~30000	6	-	A11
Pn048	Gain switching delay time	$0^{\sim}20000$	20	0.1ms	A11
Pn049◆	Gain switching time 1	$0^{\sim}15000$	0	0.1ms	A11
Pn050◆	Gain switching time 2	$0^{\sim}15000$	50	0.1ms	A11
Pn051	Maximum speed limit for motor operation	0~5000	3000	_	A11
Pn052▲	SigInl port function allocation	-31~31	1	_	A11
Pn053▲	SigIn2 port function allocation	-31~31	2	_	A11
Pn054▲	SigIn3 port function allocation	-31~31	19	_	A11
Pn055▲	SigIn4 port function allocation	-31~31	20	-	A11
Pn056	SigInl port filtering time	1~1000	2	ms	A11
Pn057	SigIn2 port filtering time	$1^{\sim}1000$	2	ms	A11
Pn058	SigIn3 port filtering time	$1^{\sim}1000$	2	ms	A11
Pn059	SigIn4 port filtering time	$1^{\sim}1000$	2	ms	A11
Pn060▲	SigOut1 port function allocation	-14~14	2	-	A11
Pn061▲	SigOut2 port function allocation	-14~14	1	_	A11

				_	
Pn062▲	SigOut3 port function allocation	$-14^{\sim}14$	4	-	A11
Pn063▲	SigOut4 port function allocation	-14~14	3	-	A11
Pn064▲	communication mode	0~2	2	-	A11
Pn065	Communication station	$1^{\sim}254$	1	-	A11
Pn066▲	Communication baud rate	$0^{\sim}5$	5	_	A11
Pn067▲	Communication mode setting	0~8	8	_	A11
Pn068	The input function control mode	$0^{\sim}32767$	0	_	A11
	selects the register 1				
Pn069	The input function control mode	$0^{\sim}32767$	0	_	A11
	selects the register 2				
Pn070	Input function logic status setting	$0^{\sim}32767$	32691	_	A11
	register 1				
Pn071	Input function logic status setting	$0^{\sim}32767$	32767	_	A11
	register 2				
Pn072	Input function logic status setting	$0^{\sim}1$	0	_	A11
	register 3				
Pn073	Input function logic status setting	$0^{\sim}1$	1	_	A11
	register 3				
Pn074	Fan opening temperature	30~70	50	Centigr	A11
				ade	
Pn075	Fan operation mode	0~2	0	-	A11
Pn076	Emergency shutdown (EMG) reset mode	0~1	0	_	A11
Pn077	Positive / reverse drive forbidden	0~2	0	_	A11
	detection				
Pn078	Undervoltage detection	0~1	1	_	A11
Pn079	System status display project	0~30	0	_	A11
	selection				
Pn080▲	Incremental encoder line number	$0^{\sim}16000$	0	line	A11
Pn081	User parameter permanent write	0~1	0	_	A11
	operation				
Pn082	SigOut port forced output	$0^{\sim}4095$	0	_	A11
Pn083	Low voltage alarm detection	$50^{\sim}\!280$	200	V	A11
	amplitude				
Pn084	High temperature alarm detection	$0^{\sim}100$	70	Centigr	A11
	amplitude			ade	

Pn085▲	Pole count of motor	$0^{\sim}100$	0	对	A11
Pn086	Internal use	_	-	_	_
Pn087▲	Selection of braking resistance	0~2	1	_	A11
Pn088	Brake resistor regeneration overload alarm level	50 [~] 250	90	%	A11
Pn089▲	External braking resistance power	20~20000	100	W	A11
Pn090▲	External braking resistance value	10~1000	100	Ω	A11
Pn091	External brake resistance, regeneration, available capacity	$5^{\sim}100$	20	%	A11
Pn092	Overload detection of braking resistor	0~1	1	_	A11
Pn093 [~] Pn0 95	Internal use	_	_	_	_

4.2.2 Position control parameter

NO.	Name	Range of	Default	Unit	apply
		values	value		
Pn096▲	Command pulse input mode	0~2	0	-	Р
Pn097▲	Instruction pulse input direction	0~1	0	-	Р
	logic selection				
Pn098	Pulse electron gear ratio of	$1^{\sim}32767$	1	-	Р
	molecule 1				
Pn099	Pulse electron gear ratio of	$1^{\sim}32767$	1	-	Р
	molecule 2				
Pn100	Pulse electron gear ratio of	$1^{\sim}32767$	1	-	Р
	molecule 3				
Pn101	Pulse electron gear ratio of	$1^{\sim}32767$	1	-	Р
	molecule 4				
Pn102▲	The denominator of a pulsed	$1^{\sim}32767$	1	-	Р
	electronic gear ratio				
Pn103	The position deviation is out of	1^{\sim} 2000	500	ten	Р
	range setting			thous	
				and	

Pn104	Location setting	0^{\sim} 32767	10	个	Р
Pn105	Position setting complete backlash	0^{\sim} 32767	3	个	Р
	setting				
Pn106	Location approach range setting	0^{\sim} 32767	300	个	Р
Pn107	Location approach back difference	0^{\sim} 32767	30	个	Р
	setting				
Pn108	Position deviation clearing mode	$0^{\sim}1$	1	-	Р
Pn109◆	Position command acceleration and	0~2	0	-	Р
	deceleration mode				
Pn110◆	Position instruction, primary	5~500	50	ms	Р
	filtering, time constant				
Pn111♦	Ta Position instruction, S shape	$5^{\sim}340$	50	ms	Р
	filtering, time constant Ta				
Pn112◆	Ts Position instruction, S shape	$5^{\sim}150$	20	ms	Р
	filtering, time constant Ts				
Pn113	Position loop feedforward gain	$0^{\sim}100$	0	%	Р
Pn114▲	Position loop, feedforward filter,	$1^{\sim}50$	5	ms	Р
	time constant				
Pn115	Position regulator gain 1	1~2000	100	1/S	Р
Pn116	Position regulator gain 2	1~2000	100	1/S	Р
Pn117	Location command source selection	0~3	0	_	Р
Pn118	Internal position instruction	0~1	0	_	Р
	pause mode selection				
Pn119	Internal position suspension	0~10000	50	ms	Р
	deceleration time				
Pn120	Internal position command 0 pulse	-9999~9999	0	万个	Р
	number high setting				
Pn121	Internal position command 0 pulse	-9999 [~] 9999	0	个	Р
	number low setting				
Pn122	Internal position command 1 pulse	-9999 [~] 9999	0	万个	Р
	number high setting				
Pn123	Internal position command 1 pulse	-9999~9999	0	个	Р
	number low setting				
Pn124	Internal position command 2 pulse	-9999~9999	0	万个	Р
	number high setting	000	-		-

		· · · · · · · · · · · · · · · · · · ·			
Pn125	Internal position command 2 pulse	$-9999^{\sim}9999$	0	个	Р
	number low setting				
Pn126	Internal position command 3 pulse	$-9999^{\sim}9999$	0	万个	Р
	number high setting				
Pn127	Internal position command 3 pulse	$-9999^{\sim}9999$	0	个	Р
	number low setting				
Pn128	Internal position instruction 0	0~3000	100	r/min	Р
	running speed				
Pn129	Internal position instruction 1	0~3000	100	r/min	Р
	running speed				
Pn130	Internal position instruction 2	0~3000	100	r/min	Р
	running speed				
Pn131	Internal position instruction 3	0~3000	100	r/min	Р
	running speed				
Pn132	Torque / speed control switching to	0~1	0	-	Р
	position control				
Pn133	Torque / speed control switching to	$5^{\sim}10000$	100	ms	Р
	position control deceleration time				
Pn134	Fixed length displacement	0~1	0	-	Р
	direction				
Pn135	Fixed length shift height	$0^{\sim}99999$	0	万个	Р
Pn136	Fixed length shift low	0~9999	100	个	Р
Pn137	Maximum running speed at fixed	$5^{\sim}5000$	200	r/min	Р
	length				
Pn138	Fixed length locking release	0~1	1	-	Р
Pn139	Vibration suppression ratio at stop	$10^{\sim}100$	100	%	Р
Pn140	The wait time is suppressed when the	0~30000	300	ms	Р
	vibration is stopped				
Pn141	Vibration suppression conditions	0~10000	10	脉冲	Р
	at stop			pulse	
Pn142~Pn1	Internal use	_	_	-	-
1					

4.2.3 Speed control parameter

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn146◆	Speed command plus deceleration	0~2	1	-	S
	mode				
Pn147◆	Ts Speed command, S curve,	5^{\sim} 1500	80	ms	S
	acceleration and deceleration time				
	constant Ts				
Pn148◆	Speed command, S curve,	5^{\sim} 10000	80	ms	S
	acceleration time constant, Ta				
Pn149◆	Speed command, S curve,	5^{\sim} 10000	80	ms	S
	deceleration time constant Td				
Pn150◆	Linear acceleration time constant	5~30000	80	ms	S
Pn151♦	Linear deceleration time constant	5~30000	80	ms	S
Pn152▲	Speed detection filter time	1~380	1	0.1ms	A11
	constant				
Pn153	Speed regulator proportional gain 1	1 [~] 2000	80	Hz	A11
Pn154	Speed regulator integration time	$1^{\sim} 5000$	150	0.1ms	A11
	constant 1				
Pn155	Speed regulator proportional gain 2	$1^{\sim} 2000$	80	Hz	A11
Pn156	Speed regulator integration time	$1^{\sim} 5000$	150	0.1ms	A11
	constant 2				
Pn157▲	Simulated speed, instruction	$1^{\sim}500$	1	0.1ms	S
	smoothing, filtering time				
Pn158	Analog speed command gain	$1^{\sim}1500$	300	r/min/V	S
Pn159	Analog speed shift adjustment	$-5000^{\sim}50$	0	mv	S
		00			
Pn160	Analog speed direction	0~1	0	_	S
Pn161	Analog speed command force zero	0~1000	0	10mv	S
	interval upper limit				
Pn162	Analog speed command forced zero	-1000~0	0	10mv	S
	interval lower bound				
Pn163	Zero speed clamping lock mode	0~1	0	-	S
Pn164	Zero speed clamping trigger mode	0~1	0	_	S
Pn165	Zero speed clamping level	0~200	6	r/min	S
Pn166	Zero speed clamping deceleration	$5^{\sim}10000$	50	ms	S

	time				
Pn167	Internal position regulator gain	1~2000	100	1/S	A11
Pn168	Speed command source selection	0~2	0	-	S
Pn169	Internal speed command 1	$-5000^{\sim}50$	0	r/min	S
		00			
Pn170	Internal speed command 2	$-5000^{\sim}50$	0	r/min	S
		00			
Pn171	Internal speed command 3	$-5000^{\sim}50$	0	r/min	S
		00			
Pn172	Internal speed command 4	-5000~50	0	r/min	S
		00			
Pn173	Internal speed command 5	$-5000^{\sim}50$	0	r/min	S
		00			
Pn174	Internal speed command 6	$-5000^{\sim}50$	0	r/min	S
		00			
Pn175	Internal speed command 7	$-5000^{\sim}50$	0	r/min	S
		00			
Pn176	Internal speed command 8	$-5000^{\sim}50$	0	r/min	S
		00			
Pn177	JOG speed	0~5000	200	r/min	S
Pn178	JOG Acceleration time	5^{\sim} 10000	100	ms	S
Pn179	JOG Deceleration time	5^{\sim} 10000	100	ms	S
$Pn180^{\sim}$	Internal use	-	-	-	-
Pn181					
Pn182◆	Speed loop PDFF control factor	0~100	100	-	PS
$Pn183^{\sim}$	Speed feedback compensation	0~100	0	%	PS
$Pn184^{\sim}$	Internal use	-	-	-	-
Pn185					

4.2.4 Torque control parameter

NO	Name	Range of	Default	Unit	Apply
		values	value		
Pn186	Torque command acceleration and	$0^{\sim}1$	0	-	Т

	deceleration mode					
Pn187▲	Torque command linear	1~30000	1	ms	Т	
	acceleration and deceleration					
	time constant					
Pn188▲	Simulated torque command	$1^{\sim}500$	5	0.1ms	Т	
	smoothing filtering time					
Pn189	Analog torque command gain	1~300	30	%/V	Т	
Pn190	Analog torque command offset	$-1500^{\sim}1500$	0	mv	Т	
	adjustment					
Pn191	Analog torque direction	$0^{\sim}1$	0	_	Т	
Pn192	Torque Q shaft regulator	5^{\sim} 2000	100	%	A11	
	proportional gain 1					
Pn193	Torque Q axis regulator	$5^{\sim} 2000$	100	%	A11	
	integration time constant 1					
Pn194	Torque Q shaft regulator	$5^{\sim} 2000$	100	%	A11	
	proportional gain 2					
Pn195	Torque Q axis regulator	$5^{\sim} 2000$	100	%	A11	
	integration time constant 2					
Pn196	Torque instruction filtering time	$1^{\sim}5000$	40	0.01ms	A11	
	constant 1					
Pn197	Torque instruction filtering time	$1^{\sim}5000$	40	0.01ms	A11	
	constant 2					
Pn198	Limiting speed during torque	0~4500	2500	r/min	Т	
	control					
Pn199	Torque control, limited speed,	0~2	0	_	Т	
	source selection					
Pn200	Internal torque 1	-300~300	0	%	Т	
Pn201	Internal torque 2	-300~300	0	%	Т	
Pn202	Internal torque 3	-300~300	0	%	Т	
Pn203	Internal torque 4	-300~300	0	%	Т	
Pn204	Torque command source	0~2	0	-	Т	
Pn205	Torque D axis regulator;	$5^{\sim}2000$	100	%	A11	
	proportional gain					
Pn206	Torque D axis regulator,	5 [~] 2000	100	%	A11	
	integral time constant					

Pn207	Speed feedback adjustment factor	$1^{\sim}3000$	100	_	Т
Pn208	Tracking torque instruction to	0~300	5	%	Т
	determine range of error 1				
Pn209	Tracking torque instruction to	0~300	2	%	Т
	determine range of error 2				
Pn210	Decision time for speed limited	0~2000	15	ms	Т
	output				
Pn211~	Internal use	_	_	_	_
Pn215					

4.2.5 Extended control parameter

NO.	Name	Range of	Default	Unit	Apply
		values	value		
Pn216▲	Absolute encoder usage selection	0~1	1	-	A11
Pn217	Absolute encoder output line	16~16384	2500	线 line	A11
Pn218	Absolute position data transfer	$0^{\sim}1$	0	_	A11
	mode for absolute encoder				
Pn219	Multi turn overflow detection for	$0^{\sim}1$	1	-	A11
	absolute encoder				
Pn220▲	SigIn5 port function allocation	$-31^{\sim}31$	3	_	A11
Pn221▲	SigIn6 port function allocation	-31~31	4	_	A11
Pn222▲	SigIn7 port function allocation	-31~31	9	_	A11
Pn223▲	SigIn8 port function allocation	-31~31	10	_	A11
Pn224▲	SigIn9 port function allocation	-31~31	11	_	A11
Pn225▲	SigIn10 port function allocation	-31~31	0	_	A11
Pn226	SigIn5 port filtering time	1~1000	2	ms	A11
Pn227	SigIn6 port filtering time	1~1000	2	ms	A11
Pn228	SigIn7 port filtering time	1~1000	2	ms	A11
Pn229	SigIn8 port filtering time	1~1000	2	ms	A11
Pn230	SigIn9 port filtering time	1~1000	2	ms	A11
Pn231	SigIn10 port filtering time	1~1000	2	ms	A11
Pn232▲	SigOut5 port function allocation	-14~14	9	_	A11
Pn233	Internal use	-	-	_	-

Pn234	Maximum pulse command frequency	20~2000	550	KHZ	Р
Pn235	Pulse instruction digital filtering time	0~255	0	100ns	Р
$Pn236^{\sim}$	Internal use	_	-	_	_
Pn239					
Pn240	Absolute encoder, forward soft	0~32000	0	圈 circle	A11
	forbidden, multi circle value				
Pn241	Absolute encoder, forward soft	$0^{\sim}99999$	0	0.0001 圏	A11
	forbidden, single coil value			circle	
Pn242	Absolute encoder, reverse soft	$0^{\sim}32000$	0	圈 circle	A11
	forbidden, multi circle value				
Pn243	Absolute encoder, reverse soft	$0^{\sim}99999$	0	0.0001 圏	A11
	inhibit, single coil value			circle	
Pn244	regression, positioning, approach	0~3000	20	个	A11
	range				
$Pn245^{\sim}$	Internal use	_	-	-	-
Pn256					
Pn257	Load inertia ratio	0.00~100.0	1.00	倍 times	PS
		0			
Pn258	Gain adjustment mode	0~1	0	-	PS
Pn259	Rigid grade selection	0~20	5	_	PS
Pn260	Real-time estimation method of	0~1	0	_	A11
	inertia				
$Pn260^{\sim}$	Internal use	-	-	_	-
Pn262					
Pn263◆	Inertia estimation acceleration and	$20^{\sim}500$	80	ms	A11
	deceleration time				
Pn264♦	Inertia estimation allows maximum	$150^{\sim}1000$	400	r/min	A11
	speed				
Pn265◆	Inertia estimation pause interval	$0^{\sim}10000$	500	ms	A11
Pn266◆	Inertia estimation; inertia ratio;	1.00~20.00	3.00	倍 times	A11
	prediction value				
Pn267▲	Rated torque of motor	0 [~] 320.00	0	N • m	A11
Pn268▲	Maximum output torque of motor	0~300.00	0	倍 times	A11

Pn269▲	Motor moment of inertia	0 [~] 320.00	0	Kg •M^2 •10^-4	A11
Pn270▲	Motor torque coefficient	0 [~] 100.00	0	N•m/Arms	A11
Pn271▲	Maximum motor speed	$80^{\sim}5500$	80	r/min	A11
$Pn272^{\sim}$	Internal use	-	-	-	-
Pn275					
Pn276	Open programmable motion controller	$0^{\sim}1$	0	-	A11
Pn277~Pn	Internal use	-	-	-	-
280					

4.3 Parameter detail

4.3.1 system parameter

NO.	Name		Range of values	Default value	Unit	Apply	
	Parameter editing a initialization		0~3	1		A11	
	Setting value	function					
Pn000	0	Parameter initialization prohibited					
	1		tialize Pn001, Pr	nitialization, k n080, Pn159, Pn1 ont functional para	90, and	not other	
	2	Restore settings before shipment.					
	3	Press button to view mode and cannot modify parameters.					

No.	Name	Range of values	Default value	Unit	Apply				
Pn001▲	Motor code	0-70	7		A11				
	The motor code must be set up with the motor, so that the motor can								
	work properly.								

The 220V drive model and the motor model adaptation sheet are as follows:

Motor mode	Pn001	Rated	Rated	Rated	KRS	KRS	KRS	KRS	KRS
		speed	torque	power	15	20A	30A	50A	75A
		(r/min)	(N.M)	(KW)					

·									
60st_m00630	0	3000	0.6	0.2	\checkmark	\checkmark	\checkmark		
60st_m01330	1	3000	1.3	0.4	\checkmark	\checkmark	\checkmark		
60st_m01930	2	3000	1.9	0.6	\checkmark	\checkmark	\checkmark		
80st_m01330	3	3000	1.3	0.4	\checkmark	\checkmark	\checkmark		
80st_m02430	4	3000	2.4	0.75	\checkmark	\checkmark	\checkmark		
80st_m03520	5	2000	3.5	0.73	\checkmark	\checkmark	\checkmark		
80st_m04025	6	2500	4	1	\checkmark	\checkmark	\checkmark		
90st_m02430	7	3000	2.4	0.75	\checkmark	\checkmark	\checkmark		
90st_m03520	8	2000	3.5	0.73	\checkmark	\checkmark	\checkmark		
90st_m04025	9	2500	4	1	\checkmark	\checkmark	\checkmark		
110st_m02030	10	3000	2	0.6	\checkmark	\checkmark	\checkmark		
110st_m04020	11	2000	4	0.8	\checkmark	\checkmark	\checkmark		
110st_m04030	12	3000	4	1.2		\checkmark	\checkmark		
110st_m05030	13	3000	5	1.5			\checkmark		
110st_m06020	14	2000	6	1.2	\checkmark	\checkmark	\checkmark		
110st_m06030	15	3000	6	1.8			\checkmark		
130st_m04025	16	2500	4	1	\checkmark	\checkmark	\checkmark		
130st_m06015	17	1500	6	1	\checkmark	\checkmark	\checkmark		
130st_m05025	18	2500	5	1.3		\checkmark	\checkmark		
130st_m06025	19	2500	6	1.5			\checkmark		
130st_m07725	20	2500	7.7	2			\checkmark		
130st_m10010	21	1000	10	1	\checkmark	\checkmark	\checkmark		
130st_m10015	22	1500	10	1.5		\checkmark	\checkmark		
130st_m10025	23	2500	10	2.6			\checkmark	\checkmark	\checkmark
130st_m15015	24	1500	15	2.3			\checkmark		
130st_m15025	25	2500	15	3.8				\checkmark	\checkmark
150st_m15025	26	2500	15	3.8				\checkmark	\checkmark
150st_m15020	27	2000	15	3				\checkmark	\checkmark
150st_m18020	28	2000	18	3.6				\checkmark	\checkmark
150st_m23020	29	2000	23	4.7				\checkmark	\checkmark
150st_m27020	30	2000	27	5.5					\checkmark
180st_m17215	31	1500	17.2	2.7				\checkmark	\checkmark
180st_m19015	32	1500	19	3			\checkmark	\checkmark	\checkmark
180st_m21520	33	2000	21.5	4.5				\checkmark	\checkmark

180st_m27010	34	1000	27	2.9				\checkmark	\checkmark
220st_m67010	35	1000	67	7					\checkmark
180st_m35015	37	1500	35	5.5					\checkmark
40st_m00330	39	3000	0.3	0.1	\checkmark	\checkmark	\checkmark		

The 380V drive model and the motor model adaptation sheet are as follows:

Motor mode	Pn001	Rated	Rated	Rated	KRS	KRS	KRS	KRS
		speed	torque	power	25	40	50	75
		(r/min)	(N. M)	(KW)				
180st_m48020	46	2000	48	10			\checkmark	\checkmark
180st_m19020	47	2000	19	4		\checkmark	\checkmark	\checkmark
180st_m35020	48	2000	35	7.3		\checkmark	\checkmark	\checkmark
180st_m27020	49	2000	27	5.6		\checkmark	\checkmark	\checkmark
180st_m48015	50	1500	48	7.5			\checkmark	\checkmark
180st_m19015	51	1500	27	3		\checkmark	\checkmark	\checkmark
180st_m21520	52	2000	27	4.5		\checkmark	\checkmark	\checkmark
180st_m27010	53	1000	27	2.9		\checkmark	\checkmark	\checkmark
180st_m27015	54	1500	27	4.3		\checkmark	\checkmark	\checkmark
180st_m35010	55	1000	35	3.7		\checkmark	\checkmark	\checkmark
180st_m35015	56	1500	35	5.5		\checkmark	\checkmark	\checkmark

NO.	Ν	Name	Range of va	lues	Default	Unit	Apply		
					value				
	Control mode		0~5		2		A11		
		Setting value			control mode				
			0						
			1	Spee		mode			
Pn002▲			2		Location	mode			
			3		Position / sp	eed mode			
			4]	Position / torque model				
			5		Speed / torq	ue mode			

• When set to 3, 4, and 5, switching between modes is determined by the Cmode signal status of the input port SigIn.
• For control mode switching, see Appendix B

No.		Name		Range of values	Default value	Unit	Apply	
	Servo enable mode			0~1	0		A11	
	Setting			function				
Pn003		value						
		0	Tł	ne SON enable dri	n			
		1	Aι	Automatically enable drive after power on				

No.	Na	me	Range of	Default	Unit	Apply			
			values	value					
	Servo disco	onnect	0~2	0		A11			
	enable shut	down mode							
	When the en	When the enable signal changes from valid to invalid, the motor can be stopped							
Pn004	operating:	erating:							
	Setting	Electromag	Decelerati		Explain				
	value	netic brake	on stop						
	0	Not used	Not used	Inertia sto	Inertia stop				
	1	Not used	Use	Slow down a	Slow down and stop. The				
				deceleratio	n time is deter	rmined			
				by Pn005					
	2	Use	Not used	Electromagn	etic braking	mode			
				parking	parking				
				(suitable f	or motors with				
				electromagn	etic brakes)				

No.	Name	Range of	Default	Unit	Apply
		values	value		

Pn005	Break down to slow	5-10000	100	ms	A11			
	down							
	When the signal is changed from valid to invalid, the motor is slowed down to							
	zero. In the deceleration process, if the enable signal is effective again,							
	the motor will slow do	own to zero						

No.		Name	Range of	Default	Unit	Apply			
			values	value					
	Use / d	o not use	0-3	0		A11			
	positiv	e and negative							
	drive p	drive prohibited							
D. 000	To set t	To set the parameter value, you can choose to use or not use the drive disable							
Pn006	functio	n. The truth ta	able is as fol	ows:					
		Setting valu	e Forward d	rive inhibit	Reverse drive	inhibit			
		0	Not	used	Not used	l			
		1	Not used Use						
		2	Use Not used		l				
		3		Jse	Use				

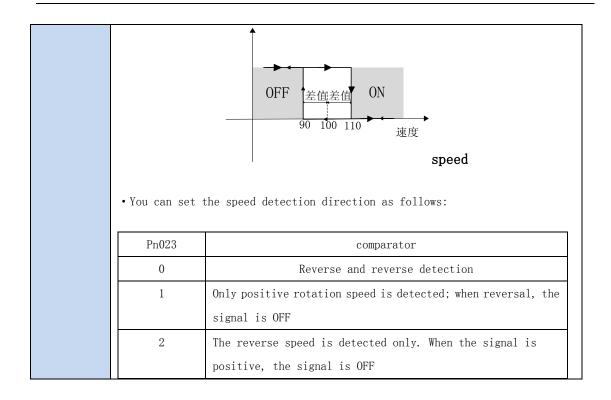
No.	Name	Range of	Default	Unit	apply		
		values	value				
	Positive / reverse	0-10000	60	ms	A11		
	drive, no stopping,						
Pn007	deceleration time						
	When a overrun occurs,	the SigIn port i	s either ccwl	or CWL, and Pn(077 is used		
	to set the OFF alarm. Over time, the motor can decelerate in accordance with						
	the deceleration time, while clearing the position command pulse (position						
	control), after stopping, the internal position is locked. The internal						
	position gain is adju	sted via the Pnl	67.				

No.	Name	Range of	Default	Unit	Apply
		values	value		

Pn008	Internal forward torque	0-300	300	%	A11
	limit (CCW)				
Pn009	Internal reverse torque	-300~0	-300	%	A11
	limit (CW)				
Pn010	External forward torque	0-300	300	%	A11
	limit (CCW)				
Pn011	External reverse torque	$-300^{\sim}0$	-300	%	A11
	limit (CW)				
	• set the torque limit i	n the motor CO	CW/CW direction	n. When the in	iternal and
	external torque limits a	re in effect,	the actual tor	que is taken a	s a smaller
	limit.				
	• the external torque li	mit is control	lled by the Si	gIn port TCCWI	and TCWL.
	• The maximum output tor	que of some mo	tors is two tim	nes the rated t	orque, and
	the maximum torque outpu	t of the motor :	is limited to t	wo times the ra	ated torque
	automatically.				

No.	Name	Range of	Default	Unit	Apply	
		values	value			
Pn012	Forward (CCW) torque	0-300	200	%	A11	
	overload 1 alarm level					
Pn013	Reverse (CW) torque	-300-0	-200	%	A11	
	overload 1 alarm level					
Pn014	Torque overload 1 alarm	1-900	250	100ms	A11	
	detection time					
Pn015	Overload 2 detection time 1-300 80 100ms					
	• Overload 1 alarm level refers to the percentage of overload overcurrent					
	relative to the rated outp	put current o	of the motor.	The overload c	apacity is	
	between 0 and the maximum	n output curr	rent. Overload	1 overload ca	apacity	
	defaults to 2 times torque	e, in the set	time, if more	e than 2 times	the output	
	torque, will perform over	load 1 prote	ection.			
	• During the set time, w	hen the moto	or reaches the	rated torque	output	
	multiples, the overload 2	protection	will be carri	ed out.		
	• If the overload level s	etting is gr	eater than the	e correspondin	g internal	

	$\space{-1.5}$ / external torque limit values, overload conditions may not be met and
	protection will not work.


No.	Name	Range of	Default	Unit	适用
		values	value		Apply
Pn016▲	Molecular DA for	$1^{\sim}127$	1		A11
	frequency division				
	output of an				
	incremental encoder				
Pn017▲	The denominator of	$1^{\sim}127$	1		A11
	frequency division				
	output of				
	incremental encoder				
	DB				
	The output ratio of	f the incrementa	l encoder is u	sed to segment	the pulse
	signal of the encoder,	, and only appli	es to the serv	vo unit with i	ncremental
	encoder. Frequency di	vision must be s	satisfied: DA/	DB>=1. For exa	ample, the
	encoder is 2500 lines	and the frequen	cy division va	alue is DA/DB=	25/8. Then
	the number of lines aft	ter dividing is 2	500/ (DA/DB) =	2500/ (25/8) =	800 lines.

No.		Name	Range of values	Default value	Unit	Apply
	Encoder	output pulse	0-1	0		A11
Pn018▲	AB phase	-				
		Setting		Function		
		value				
		0	The motor counter clockwise rotation A ahead B;			
		clockwise rotation before B ultrasonic A				
		1 The motor rotates counterclockwise A before the			ie	
			B ultrasonic; cl	ockwise rotati	on A ahead of	В

No.	Name	Range of	Default	Unit	Apply
		values	value		

Pn019▲	Rated current setting	0. 0-100. 0	0	Arms	A11	
Pn020▲	Rated speed setting	0~5000	额定转速	r/min	A11	
	If the parameter is set to 0, the default value set by the manufacturer is					
	used; otherwise, the user must set the parameter value strictly according to					
	the rated current, the effective value and the rated speed of the motor and					
	the corresponding inte	rnal and forward	torque limit v	alues. The mot	or will not	
	operate properly if it	is improperly s	et up. Dependi	ng on the driv	ve type and	
	the motor code, the maximum actual current value available is different. General					
	users, please do not m	nodify				

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn021	Reach a predetermined	$0^{\sim}5000$	500	r/min	A11
	speed				
Pn022	Arrive at a	$0^{\sim}5000$	30	r/min	A11
	predetermined speed,				
	lag, compare				
	difference				
Pn023	Arrive at a	0-2	0		A11
	predetermined speed,				
	direction of				
	detection				
	• When the motor speed	l exceeds the set	decision value,	, the Sreach of	the output
	port SigOut will be	converted to ON	, otherwise OF	F.	
	• The comparator has	hysteresis compa	rison characte	ristics. The va	alue of the
	difference setting	is too small, th	e higher the o	utput signal t	urn off
	frequency is, the l	arger the settin	g value is, th	e smaller the	turn off
Pn023	frequency is, but at	the same time the	resolution of t	the comparator	is reduced.
	Example: the preset	speed is set to	100, and the	difference is	set to 10.

No.	Name	9	Range of	Default	Unit	Apply	
			values	value			
Pn024	Arrival torq	le	0-300	100	%	A11	
Pn025	Lag differend	e between	0-300	5	%	A11	
	arrival torq	ue and					
	preset torqu	Э					
Pn026	Reach the de	Reach the desired		0		A11	
	torque direc	torque direction					
	•	•					
	When the oper	ating torqu	e of the motor ex	ceeds the set o	lecision value,	the Treach	
	of the o	utput port	SigOut will be o	converted to ON	N, or not OFF.		
	• Torque det	ection dire	ection can be set	t as follows:			
	Pn026		comparator				
	0		Reverse and reverse detection				
	1	Only posi	nly positive torque is detected; when reversal, the signal				
				is OFF.			

2	Reverse torque is detected only when the forward turn signal	
	is OFF.	

No.	Name	Range of values	Default value	Unit	Apply
Pn027	Zero velocity	0~1000	10	r/min	A11
	detection range set				
Pn028	Zero speed test return	$0^{\sim}1000$	5	r/min	A11
	error				
	When the motor speed	d is lower than th	ne set speed va	lue, the zeros	peed of the
	output port SigOut is	changed to ON, or	therwise OFF.		

No.	Name	Range of values	Default	Unit	Apply		
			value				
Pn029	Zero speed detection	0~1000	5	r/min	A11		
	point of motor						
	electromagnetic brake						
	Only when the electroma	Only when the electromagnetic brake function is used, will the motor be judged to					
	be a zero speed state.						

No.	Name	Range of values	Default	Unit	Apply	
			value			
Pn030	Delay time of	0~2000	0	Ms	A11	
	electromagnetic brake					
	when the motor is					
	stationary					
	• When the motor is st	ationary, the ele	ctromagnetic b	rake starts the	delay time	
	of the motor to cut	t off the current				
	•When using the electromagnetic braking function, the servo break enable mode Pn004					
	must be set to 2.					

No.	Nam	e Range of values	Default	Unit	Apply
			value		

Γ	Pn031	When the motor is	0~2000	500	ms	A11		
		running, the						
		electromagnetic brake						
		wait time						
		When the motor is running, the motor breaks the current to the time between the						
		brake of the electromag	gnetic brake.					

No.	Name	Range of values	Default	Unit	Apply			
			value					
Pn032	The speed of the	0-3000	30	r/min	A11			
	electromagnetic brake							
	when the motor is							
	running							
	When the motor is runn	When the motor is running, when the motor is less than the speed set by this						
	parameter, the magnetic	c brake starts to	brake.					

No.	Na	me	Ra	nge of values	Default	Unit	Apply	
					value			
	Origin regr	ression	0^{\sim}	3	0		A11	
	trigger mode							
	Setting value			functi	on			
Pn033	0			Turn off the	origin regres	sion function		
		1		Triggered by the GOH level of the input port SigIn				
		2		Triggered by the rising edge of the input port			t port	
				SigIn GOH				
		3		Automatic execution of power on				
	• The origi	n regression	n me	thod is shown	in Appendix H			

No.	Name	Range o	of	Default value	Unit	Apply
	Origin regression	0~6		0		A11
	reference point mode					
	Setting value	Э		Funct	tion	
	0	1	The REF is	turned (trigge	ered by the ris	ing edge)
Pn034			as the r	eference point		
	1	H	Flip for R	EF (rising edg	e trigger) as	reference
			point			
	2]	The CCWL is being turned (triggered by the			
		t	falling edge) as the reference point			
	3	H	Reverse find CWL (drop edge trigger) as			
			reference point The Z pulse is being turned to the reference			
	4]				
		I	point			
	5]	furn the	Z pulse for re	ference point	
	6	I	Absolute zero as reference point			
		·				
	Note: when CCWL or CWL parameter and turn on			erence point,	you need to se	et the PnOO

No.	Name	Range of values	Default value	Unit	Apply
	Origin regression origin mode	0~2	0		A11

Pn035			
1.11000	Setting value	Function	
	0	Look for the origin of the Z pulse backwards	
	1	Look for the origin of the Z pulse forward	
	2	The origin is raised directly at the rising edge of	
		the reference point	

No.	Name	Range of values	Default	Unit	Apply		
			value				
Pn036	Origin position offset	-9999~9999	0	ten thousand	A11		
	high			pulse			
Pn037	Origin position offset	-9999~9999	0	pulse	A11		
	low						
	找到原点后,加上偏移量(Pn036*10000+Pn037)作实际原点。When the origin is found,						
	the offset (Pn036*10000+	, Pn037) is added	as the actu	al origin.			

No.	Name	Range of	Default value	Unit	Apply		
		values					
Pn038	Origin regression first	1~3000	200	R/min	A11		
	speed						
Pn039	Origin regression	1~3000	50	R/min	A11		
	second speed						
	When the origin retur	When the origin return operation is performed, the reference point is searched					
	at the first speed, and the original point is searched at the second speed after						
	reaching the reference po	int. Second the s	peed should be les	s than the f	irst speed.		

No.	Name	Range of values	Default value	Unit	Apply	
Pn040	Origin regression	$5^{\sim}10000$	50	ms	A11	
	acceleration time					
Pn041	Origin regression	5~10000	50	ms	A11	
	deceleration time					
	In origin regression execution, the motor is accelerated from zero to the rated					
	speed and is used only	for origin return	n operations.			

No.	Name	Range of values	Default value	Unit	Apply		
Pn042	Origin on time delay	0~3000	60	ms	A11		
	After reaching the ori	igin, the motor i	s completely s	tationary for a	a period of		
	time delay. After complet	time delay. After completion of the delay, the HOME output of the output port SigOut					
	is changed to ON.						

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn043	The origin regression	5~3000	80	ms	A11
	completes the signal				
	delay				
	HOME sustained effective	time			

No.	Name		Range of values	Default value	Unit	Apply	
Pn044	Pn044 Origin return instruction execution mode		0~1	0		A11	
	Function						
	0 When the origin return is complete, wait for the HOM signal to become OFF, then receive and execut instructions.						
	1	When the origin return is complete, the instruction is received and executed immediately.					

No.	Name	Range of values	Default value	Unit	Apply
	Gain switching selection	0~5	0		A11

Setting		Funtion				
	value					
	0	Fixed first gain.				
Pn045	1	Fixed second gain.				
	2	Controlled by the Cgain terminal of the input port SigIn,				
		the OFF is first gain and the ON is second gain.				
	3	Controlled by the speed command, when the speed command				
		exceeds Pn046, the switch is switched to first gain				
	4	When the position deviation exceeds Pn046, the switch is				
		switched to first gain by pulse bias control.				
5		Controlled by the motor speed, when the position deviation				
		exceeds Pn046, the switch is switched to first gain.				

Gain switching is shown in Appendix A

No.		Name		Range of values	Def	ault value	Unit	Apply
Pn046	Gain s	witching l	evel	0~30000	80			A11
Pn047	Gain s	switching back		0~30000	6			A11
	difference							
	Depending on the setting of the PnO45 parameter, the conditions and units for							
	switching are different:							
	Pn045 Gain			witching condition		Unit		
	3 Speed			command r/min				
		4 Pulse		deviation	Pulse			
	5 motor			speed		r/min		

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn048	Gain switching delay	0~20000	20	0.1ms	A11

	time						
	The gain switching condition satisfies the delay time of the start switch.						
	If the switch condition	If the switch condition is detected during the delay phase, the switchover					
	is canceled.						

No.	Name	Range of	Default value	Unit	Apply	
		values				
Pn049◆	Gain switching time 1	$0^{\sim}15000$	0	0.1ms	A11	
Pn050◆	Gain switching time 2	$0^{\sim}15000$	50	0.1ms	A11	
	When the gain is a	switched, the cu	rrent gain combi	nation is	linearly	
	smoothed at this time, gradually varying to the target gain combination, and					
	each parameter in the o	combination vari	es simultaneousl	у.		

No.	Name	Range of	Default value	Unit	Apply	
		values				
Pn051	Maximum speed limit	0~5000	3000		A11	
	for motor operation					
	Used to limit the	naximum speed of	motor operation	. The set	ting value	
	shall be less than or equal to the rated speed, otherwise the maximum speed					
	at which the motor can	run is rated sp	beed.			

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn052▲	SigIn1 port function	-31~31	1		A11
	allocation				
Pn053▲	SigIn2 port function	-31~31	2		A11
	allocation				
Pn054▲	SigIn3 port function	-31~31	19		A11
	allocation				
Pn055▲	SigIn4 port function	-31~31	8		A11
	allocation				
Pn220▲	SigIn5 port function	-31~31	3		A11

	alloca	ation					
Pn221▲		6 port function	-31~3	1	4		A11
Pn221			-31 3	L	4		AII
	alloca	ation					
Pn222▲	SigIn'	7 port function	-31~3	l I	9		A11
	alloca	ation					
Pn223▲	SigIn	8 port function	-31~31	L	10		A11
	alloca	ation					
Pn224▲	SigIn	9 port function	-31~3	L	11		A11
	alloca	ation					
Pn225▲	SigIn	10 port function	-31~3	L	0		A11
	alloca	ation					
	• Spec	cific function all	location, re	fer to SigI	In function det	tailed tab	ole.
	• -1 [~]	-31 function numbe	r is 1-31 fu	nction numbe	er, the corresp	onding ne	gative
	logic	function is the s	same, the ef	fective lev	vel is opposite	2.	
		Setting value	SigIn inp	ut level	SigIn corres	ponding]
					function n	umber	
		Positive	Low 1	evel	ON		1
			High 1	level	OFF		
		negative	Low 1	evel	OFF]
			High 1	level	ON]
			-				-

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn056	SigIn1 port filtering time	1~1000	2	ms	A11
Pn057	SigIn2 port filtering time	1~1000	2	ms	A11
Pn058	SigIn3 port filtering time	1~1000	2	ms	A11
Pn059	SigIn4 port filtering time	1~1000	2	ms	A11
Pn226	SigIn5 port filtering time	1~1000	2	ms	A11
Pn227	SigIn6 port filtering time	1~1000	2	ms	A11
Pn228	SigIn7port filtering time	1~1000	2	ms	A11

Pn229	SigIn8 port filtering time	1~1000	2	ms	A11
Pn230	Pn230 SigIn9 port filtering time		2	ms	A11
Pn231	SigIn10 port filtering time	1~1000	2	ms	A11
	Perform digital filtering on the input port SigIn.				

No.	Name		Range of values	Default value	Unit	Apply
Pn060▲	SigOut1 port functi	on	-14~14	2		A11
	allocation					
Pn061▲	SigOut2 port function - allocation		$-14^{\sim}14$	1		A11
Pn062▲	SigOut3 port function		$-14^{\sim}14$	4		A11
	allocation					
Pn063▲	SigOut4 port function		-14~14	7		A11
	allocation					
Pn232▲	SigOut3 port function		-14~14	9		A11
	allocation					
Pn233▲	SigOut4 port functi	on	-14~14	10		A11
	allocation					
	parameter values	Corresp	onding function	SigOut out	put result	ts
			number			
	Positive		ON	Low	level	
			OFF	High	level	
	negative		OFF	Low	level	
			ON	High	level	
	Specific function a	llocation,	refer to SigOu	t function detai	led table.	

No.	Name	Range of	Default	Unit	Apply
		values	value		
	communication mode	0-2	2		A11

	Setting value	Function	
Pn064▲	0	No communication	
	1	RS-232	
	2	RS-485	
	The communication	protocol is detailed in the seven	th chapter Modbus
	communication function	n	

No.	Name	Range of values	Default value	Unit	Apply		
Pn065	Communication station	1-254	1		A11		
	When using Modbus communica	ation, each group	o of drivers shou	ıld set d	ifferent		
	site numbers in advance. If the site number is repeatedly set, the communication						
	will be paralyzed.						

	Name	Range of values	Default value	Unit	Apply
Commur	nication baud rate	0-5	5		A11
	Setting value				
	1				
	3				
	4	57	57600		
	5	115	5200		
	Commur	Communication baud rate Setting value 0 1 2 3 4	valuesCommunication baud rate0-5Setting valuebaud048196219338457	valuesCommunication baud rate0-5Setting valuebaud rate0480019600219200338400457600	valuesCommunication baud rate0-5Setting valuebaud rate0480019600219200338400457600

No.	Name	Range of values	Default value	Unit	Apply
	Communication mode setting	0-8	8		A11

	The parame	ter values are	defined in the following table, as a	shown in Chapter
	seventh, M	odbus communic	ation function	
		Set up	format	
		0	7 , N , 2 (Modbus ,ASCII)	
Pn067▲		1	7 , E , 1 (Modbus , ASCII)	
		2	7 , 0 , 1 (Modbus , ASCII)	
		3	8 , N , 2 (Modbus , ASCII)	
		4	8 , E , 1 (Modbus , ASCII)	
		5	8 , 0 , 1 (Modbus , ASCII)	
		6	8 , N , 2 (Modbus , RTU)	
		7	8 , E , 1 (Modbus , RTU)	
		8	8 , 0 , 1 (Modbus , RTU)	

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn068	The input function control mode	$0^{\sim}32767$	0		A11
	selects the register 1				
Pn069	The input function control mode	$0^{\sim}32767$	0		A11
	selects the register 2				

• Certain functions are controlled by means of communication or port input. If the communication mode is not controlled, 0 can be set.

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Function	ZeroLock	EMG	TCW	TCCW	CWL	CCWL	Alarmrst	Son
Default value	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Retain	Cgain	Cmode	TR2	TR1	Sp3	Sp2	Sp1
0	0	0	0	0	0	0	0

• Pn069 参数: Pn069 parameter:

BIT	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Function	REF	GOH	PC	INH	Pclear	Cinv	Gn2	Gn1
Default value	0	0	0	0	0	0	0	0

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Retain	Punlock	Pdistance	Psource	pstop	ptriger	Pos2	Pos1
0	0	0	0	0	0	0	0

 In communication control, the above functions are determined by the input port on the CN2 or by the communication control. Set to 0, the control is changed by the input port on the CN2; set to 1, then changed by the communication control. The default is entirely controlled by the input port. For example: son SP3 SP2 SP1 function through the communication control and other control through the input port, the setting value is 00000111_00000001 (binary) / 0x0701 (sixteen m) -->1793 (decimal), so set the Pn068 parameter to 1793.

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn070	Input function logic status	$0^{\sim}32767$	32691		A11
	setting register 3				
Pn071	Input function logic status	$0^{\sim}32767$	32767		A11
	setting register 3				

• When RS232 or RS485 communication is carried out, Pn068 is set up, and the corresponding bits of Pn069 are controlled by communication, and the position of the corresponding parameter is set or cleared to control the status of the input function signal. Logical 0 is valid.

 \bullet Pn070 parameter:

position	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
Function	ZeroLock	EMG	TCW	TCCW	CWL	CCWL	Alarmrst	Son
Default value	1	0	1	1	0	0	1	1

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Retain	Cgain	Cmode	TR2	TR1	Sp3	Sp2	Sp1
0	1	1	1	1	1	1	1

• Pn071 parameter:

Position	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Functional signal	REF	GOH	PC	INH	Pclear	Cinv	Gn2	Gn1
Default value	1	1	1	1	1	1	1	1

BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8
Retain	Punlock	Pdistance	Psource	Pstop	Ptriger	Pos2	Pos1
0	1	1	1	1	1	1	1

• In the communication control mode, by setting the bits of this register, we can achieve the effect of CN2 external input signal control. For example: the driver in the position control mode, to prohibit the pulse command, set the Pn071 BIT4 settings 0, then the input pulse becomes invalid. Non communication control, set the value of the reference, are invalid.

Note: each time the power is on, the drive automatically loads the values of the Pn070, Pn071 registers, and executes the corresponding operations immediately. Therefore, before the enable motor, the input function signal is determined to enter the correct working state.

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn072	The input function control	0~1	0		A11
	mode selects the register 3				
Pn073	Input function logic status	0~1	1		A11
	setting register 3				

• Pn072 parameter:

Position	BIT15 [~] BIT1	BITO
Function	Retain	Sen
Default value	0	0

• Pn073 parameter

Position BIT15 [°] BIT1			BITO					
Function Retain			Sen					
Default va	alue	0		1				
No.	Name		Range o	of values	Defau	lt value	Unit	Apply
Pn074	Fan opening temperature		30~70		50		°C	A11
Pn075	Fan operation mode		0~2		0			A11

Pn075	Fan operation mode
0	Temperature sensing automatic operation
1	Boot operation
2	Close

No.	Name	Range of	Default value	Unit	Apply		
		values					
	Emergency shutdown (EMG)	0-1	0		A11		
	reset mode						
	\bullet Clear the EMG (AL-14) alarm condition after the EMG status OFF is lifted:						
Pn076	• In the enabling ON state,	if the external	command input, t	he EMG ala	arm is		
	Setting value		Function				
	0	The servo mus	The servo must enable the OFF to be				
		cleared by mar	nual or port SigIn	:AlarmRst.			
	1	No matter the	No matter the servo enable ON or OFF, the				
		EMG changes t	EMG changes to ON again and will be				
		automatically	automatically cleared.				
	automatically cleared, the	instructions are	executed immedia	tely.	_		

No.	Name		Range of	Default value	Unit	Apply	
			values				
	Positive / reverse	drive	0-2	0		A11	
	forbidden detection						
If you use the ccwl or CWL function, when ccwl or CWL is the					e OFF sta	ate, you	
D. 077	can set whether	or not t	o issue a AL-15	alarm:			
Pn077							
	Setting value	function					
	0	Do not alarm, slow down and stop.					
	1	When the motor is running, when the deceleration is					

	stopped, the alarm is sent out, and the motor is no longer energized.
2	Alarm immediately, motor power off, free stop.

No.	Name	Range of values	Default value	Unit	Apply
Pn078	Undervoltage detection	0~1	1		A11
	Setting value	Function			
	0	Not detected			
	1	detection			
	·				

No.	Name	Range of values	Default value	Unit	Apply			
	System status display	0-30	0		A11			
	project selection							
	After the drive is	powered on, automat:	ically enter the r	nonitor mo	de menu			
	Dn000 submenu. By def	ault, the state dis	splay system acco	ording to	the			
	manufacturer the way ((motor speed), the us	ser can set the p	arameter v	alues,			
	the Dn000 display syst	em state specific p	arameters, speci	fically re	efer to			
	"monitor model list".							
	0 system defaults (motor speed)1 speed command 2 average torque 3 position							
	deviation 4 AC power supply voltage 5 maximum instantaneous torque 6 pulse							
Pn079	input frequency 7 heat	equency 7 heat sink temperature 8 current motor speed						
	9 the effective input	command pulse accum	ulated value is	low				
	10 the effective input command pulse accumulation value is high							
	11 position control, the encoder effective feedback pulse accumulated value							
	is low							
	12 position control, the encoder effective feedback pulse accumulation value							
	is high							
	13 regenerative brakin	g load rate						
	14 input port signal s	tatus 15 output	port signal stat	us				
	16 analog torque command voltage 17 analog speed command voltage							
	18 output function sta	tus register						

$19 \; {\rm after} \; {\rm servo} \; {\rm power} \; {\rm on}, \; {\rm the \; encoder} \; {\rm feedback} \; {\rm pulse} \; {\rm accumulated} \; {\rm value} \; {\rm is} \; {\rm low}$
20 servo power on, the encoder feedback pulse accumulation value is high
21 drive software version 22 encoder UVW letter 23 rotor absolute
position 24 drive type
25 absolute encoder single loop low data 26 absolute encoder single loop
data high
27 absolute encoder multi ring data low 28 absolute encoder multi ring data
high
29 load inertia ratio display

No.	Name	Range of	Default value	Unit	Apply			
		values						
	Incremental encoder line	0~16000	0	line	A11			
	number							
	• The number of encoders mour	nted on the motor	r shaft. Setting	values i	must be			
Pn080	specified with the encoder li	specified with the encoder line number nominal values are exactly the same,						
P11080	the motor angle encoder installation and wiring connection with defined drive,							
	otherwise blocking of the motor run or position deviation and other non normal							
	instruction execution. General users do not need to modify this parameter, the							
	default value can be. If the encoder is absolute encoder, this parameter setting							
	is invalid.							
	• When O values are taken, it	is the line value	e of the motor sta	andard ei	ncoder.			

No.	Name	Range of values	Default value	Unit	Apply	
	User parameter permanent	0-1	0		A11	
	write operation					
Pn081	Corresponding auxiliary mode Fn001 operation. Writes all parameter values of the current Pn000 ^{Pn219} to EEPROM. When the parameter value is changed from 0 to 1, the driver will execute a write operation. This operation is only valid					
	when communicating (Pn064)	>0).				

	No.	Name	Range of values	Default value	Unit	Apply
--	-----	------	-----------------	---------------	------	-------

Pn082	SigOut port forced output	$0^{\sim}4095$	0	A11

• Force the SigOut port to output the fixed level. By setting this parameter, the output level of the output port is forced.

	Retain	SigOut5	Sig(Dut4	Sig)ut3	Sig(Dut2	Sig)ut1
position	BIT15 [~] BIT10	BIT19 [~] BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Default	0	0	0	0	0	0	0	0	0	0
value										

The output port truth table is as follows:

		SigOut2			SigOut1
BIT3	BIT2	Output level	BIT1	BIT0	Output level
0	0	Non coercive state	0	0	Non coercive state
0	1	Forced high level	0	1	Forced high level
1	0	Forced low level	1	0	Forced low level
1	1	Non coercive state	1	1	Non coercive state

		SigOut4			SigOut3
BIT7	BIT6	Output level	BIT5	BIT4	Output level
0	0	Non coercive state	0	0	Non coercive state
0	1	Forced high level	0	1	Forced high level
1	0	Forced low level	1	0	Forced low level
1	1	Non coercive state	1	1	Non coercive state

		SigOut5
BIT9	BIT8	Output level
0	0	Non coercive state
0	1	Forced high level
1	0	Forced low level
1	1	Non coercive state

Example: the output port SigOut2 forces the output to be low, and the other port states are not forced to output. The Pn082 parameter is set to 8.

	No.	Name	Name Range of values Default value Unit Apply								
PnO	083	Low voltage alarm detection	50^{280}	200	V	A11					
		amplitude									
		When the bus voltage is below this amplitude, the Pn078 determines whether or									
		not the alarm is given.									

No.	Name	Range of values	Default value	Unit	Apply		
Pn084	High temperature alarm	0~100	70	°C	A11		
	detection amplitude						
	When the heat sink temperature is higher than this amplitude, the alarm will be						
	sent out. If set to 0, screen the alarm.						

No.	Name	Range of values	Default value	Unit	Apply	
Pn085▲	Pole count of motor	0~100	0~100 0		A11	
	Default value for the driv	e when the paramete	er is O.			
No.	Name	Range of values	Default value	Unit	Apply	
	Selection of braking	0~2	1	-	A11	
	resistance					
Pn087▲						
	Setting value		Function			
	0	No braking resistors are installed				
	1	Use built in brake resistors				
	2	Use an ex	ternal braking r	esistor		

No.	Name	Range of values	Default value	Unit	Apply		
	Brake resistor regeneration	$50^{\sim}250$	90	%	A11		
	overload alarm level						
Pn088	• The higher the overload rate of the resistor regeneration, the higher the						
	resistance surface temperature.						
	• When the internal or external braking resistor, the regenerative braking load						
	rate is lower than the alarm level, the overload alarm is not carried out.						
	• Set Pn092=0, shield regeneration overload alarm.						

◢

No.	Name	Range of values	Default value	Unit	Apply
Pn089▲	External braking resistance power	20~20000	100	W	A11
Pn090▲	External braking resistance value	10~1000	100	Ω	A11
Pn091	External brake resistance, regeneration, available capacity	5~75	20	%	A11
	• When using an external braking value, and resistance must be set • When the available capacity of factors such as ambient temperaturd dissipation characteristics must be decreased. Braking resistor avan the resistance surface temperatur resistance, causing fire. Please the brake resistance is mounted try to set 25%. If a strong wind b for a period of time, check wheth repeated attempts, the regenerat resistance temperature is within that is to say, no braking resis	et. The brake resis ure, ventilation be taken into ac ailable capacity a re up to several h choose the brake on a large radia lows, try setting er the resistance ive overload ala the allowable ra	stance is set, he intensity and re ecount, and the re should not be too nundred degrees C resistor in safe tor, if it is nar g 45%. After chec e temperature is arm still occurs, nge, and the Pn09	eat diss esistanc esistanc high, ot elsius, 1 conditic turally king the too high , while	ipation e, heat e shall herwise burning on. When cooled, system . After the

No.	Name		Range of	Default value	Unit	Apply
			values			
Pn092	Overload detection of braking		$0^{\sim}1$	1	_	A11
	resistor					
	Setting value			function		
	0 Do not issue alarm when regenerative overload occurs				ccurs	
	1	Issu	e alarm when reg	generative overlo	oad occurs	

4.3.2 Position control parameter

No.		Name	Range of values	Default value	Unit	Apply
	Command p	ulse input mode	0-2	0		Р
	Pn096 Direct order Negative com					
	Pn096		Direct order	Negative c	ommand	
Pn096▲	0	Pulse + direction	PP- PD- DFF ON			
	1	Forward / reverse pulse	РР+ PP- PD+ PD-	L		
	2	Quadrature pulse	^{₽₽+} _₹₹₹₹₹₹₹ ₽₽- ₽ <mark>₽-</mark> ₹₹₹₹₹₹₹₹₹₹ ₽ <mark>0-</mark> ₹₹₹₹₹₹₹₹₹			
		1	I			

No.		Name		Range of values	Default value	Unit	Apply
Pn097▲		truction pulse input 0 ection logic selection		0-1	0		Р
	Setti	ng value 0 1	clockwi	he positive comm se (CCW)	Function and and turn the und and turn the m		

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn098	Pulse electron gear ratio of	$1^{\sim}32767$	1		Р
	molecule 1				
Pn099	Pulse electron gear ratio of	$1^{\sim}32767$	1		Р

	molecu	le 2						
Pn100	Pulse	electron	gear rati	o of	1~32767	1		Р
	molecu	le 3						
Pn101	Pulse	electron	gear rati	o of	$1^{\sim}32767$	1		Р
	molecu	lecule 4						
Pn102	The de	enominator of a pulsed			1~32767	1		Р
	electr	onic gear ratio						
	The mo	lecular N	of the ele	ectronic g	ear ratio is dete	ermined by GN1, (GN2 of the	input
	port S	igIn. Den	ominator	fixing. Mo	olecular selecti	on follows:		
		CNO	CN1	E1				
		GN2	GN1	Electron	nic gear ratio, n	nolecular N		
		OFF	OFF	Molecule	e 1			
		OFF	ON	Molecule 2				
		ON	OFF Molecule 3					
		ON	ON	Molecule	e 4			

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn103	The position deviation is	1~2000	500	ten thousand	Р
	out of range setting			pulse	
	When the pulse number o	f the pulse de	viation counter	exceeds the se	et value
	(i.e., the difference between the current position and the target position),				
	the driver sends out an al	larm signal.			

No.	Name	Range of	Default	Unit	Apply	
		values	value			
Pn104	Location positioning	0^{\sim} 32767	10	pulse	Р	
	complete range setting					
Pn105	Location positioning	0^{\sim} 32767	3	pulse	Р	
	complete backlash setting					
	When the residual pulse number of the offset counter is lower than the					
	parameter setting value, th	ne output port S	igOut:: Preach	n signal is ON,	otherwise	

OFF.	

No.	Name	Range of values	Default value	Unit	Apply	
Pn106	Location positioning	0^{\sim} 32767	300	pulse	Р	
	complete range setting					
Pn107	Location positioning	0^{\sim} 32767	30	pulse	Р	
	complete backlash setting					
	When the residual pul	lse number of the	offset counter i	s lower tha	an the	
	parameter setting value, the Pnear signal of the output port SigOut is ON,					
	otherwise OFF.					

No.	Name		Range of values	Default value	Unit	Apply
	Position deviati	on clearing	0-1	1		Р
	mode					
	Position cont	rol, you can ι	use the SigIn's Pcl	ear function to	clear th	e value
Pn108						
111100	Setting value		Function			
	0	Pclear Level	el ON period			
	1 Pclear Rising edge time (from OFF to ON)					
	of the position	offset counte	er. Positional err	or clearing occu	rs at:	_

0.	Name	Range of	Default value	Unit	Apply
		values			
	Position command	0-2	0		Р
	acceleration and				
Pn109◆	deceleration mode				
	Setting value	Function			
	0	No filtering			
	1	One time smooth fi	lltering		
	2	S shape filtering			

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn110◆	Position instruction, primary	$5^{\sim}500$	50	ms	Р
	filtering, time constant				
Pn111♦	TaPosition instruction, S	5~340	50	ms	Р
	shape filtering, time constant				
	Ta				
Pn112◆	Ts Position instruction, S	$5^{\sim}150$	20	ms	Р
	shape filtering, time constant				
	Ts				
	• Filter time constant definit	ion: the time fr	om the current p	osition,	the
	instruction frequency, to the	target instructi	on frequency. Th	ie longer	the
	filtering time, the better the f	requency smoothr	less of the posit:	ion instr	ruction,
	but the greater the instruction	response delay.	On the occasion	s of step	o change
	of the instruction pulse frequen	ncy, the motor is	operated smoothl	y. Filte	ring has
	no influence on the number of	instruction puls	es.		
	• Filter time T=Ta+Ts. Ta: stra	aight part of tim	e, the smaller th	e Ta, th	e faster
	the acceleration and decelerat	ion. Ts: arc par	t time, the grea	ter the	Ts, the
	smoother the speed, the smalle	r the impact.			
	f Ts Ta+Ts 设	目标指令脉冲频率 当前指令脉冲频率 Ts 置规则: <u>Ta</u> ≥			

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn113	Position loop feedforward gain	0-100	0	%	Р
Pn114▲	Position loop, feedforward	1-50	5	ms	Р
	filter, time constant				

In position control, the position feedforward is directly applied to the speed
command, which can reduce the tracking error of position and improve the response.
If the feed forward gain is too large, it may cause velocity overshoot. The
feedforward commands can be smoothed.

No.	Name	Range of	Default value	Unit	Apply	
		values				
Pn115	Position regulator gain 1	1-2000	100	1/S	Р	
Pn116	Position regulator gain 2	1-2000	100	1/S	Р	
	On the premise that the med	chanical system d	oes not produce v	ibration o	or noise,	
	the position loop gain is increased to accelerate the reaction speed and shorten					
	the positioning time.					

No.	Name		Range of values	Default value	Unit	Apply	
	Location command so	ource	0~3	0		Р	
	selection						
	Setting value		Function				
Pn117	0	Externa	External pulse input				
1 11 1 1	1	Interna	Internal position instructions (see Appendix G)				
	2	The command source is determined by the SigIn:psource.					
		On: inte	ernal position inst	ruction; Off: ext	ernal puls	e	
		input					
	3	Motion	controller instruc	ction			

No.		Name		Range of values	Default value	Unit	Арј	ply
		Internal positic pause mode selec		0~1	0]	P
		Setting value	ue Function					
Pn118		0		en according to th	ion is triggered he currently sele			
		1	When the pst	op trigger actio	on is triggered a	again, the		

ptriger continues to complete the last remaining internal	
position command pulses.	

No.	Name	Range of values	Default value	Unit	Apply
Pn119	Internal position suspension	0~10000	50	ms	Р
	deceleration time				
	In the internal position of	control, when the	falling edge of t	the pstop o	occurs,
	the motor will decelerate from	the current runnin	ug speed to O, and	its decel	eration
	time can be set by this param	neter (for interna	l position contr	ol only).	

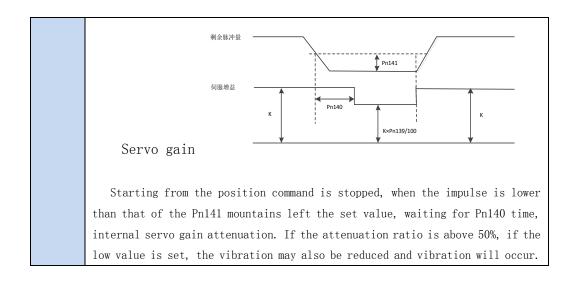
No.	Name	Range of	Default value	Unit	Apply
D 100		values			5
Pn120	Internal position command 0	-9999~9999	0	Tens of	Р
	pulse number high setting			thousan	
				ds	
				pulse	
Pn121	Internal position command O	-9999~9999	0	one	Р
	pulse number low setting				
Pn122	Internal position command 1	-9999~9999	0	Tens of	Р
	pulse number high setting			thousan	
				ds	
				pulse	
Pn123	Internal position command 1	$-9999^{\sim}9999$	0	one	Р
	pulse number low setting				
Pn124	Internal position command 2	-9999~9999	0	Tens of	Р
	pulse number high setting			thousan	
				ds	
				pulse	
Pn125	Internal position command 2	-9999~9999	0	one	Р
	pulse number low setting				
Pn126	Internal position command 3	-9999~9999	0	Tens of	Р
	pulse number high setting			thousan	
				ds	
				pulse	

Pn127	Internal position command 3	-9999~9999	0	one	Р			
	pulse number low setting							
	Internal position instruction N (Mai Chongliang) = internal position command,							
	N pulse number, high setting value * 10000 + internal position command, N pulse							
	number, low setting value							
	Example: encoder 2500 lin	Example: encoder 2500 lines, to travel, 12.5 turn, then set Pn120=12,						
	Pn121=5000.							

No.	Name	Range of values	Default value	Unit	Apply			
Pn128	Internal position	0~3000	100	r/min	Р			
	instruction 0 running speed							
Pn129	Internal position	0~3000	100	r/min				
	instruction 1 running speed							
Pn130	Internal position	0~3000	100	r/min	Р			
	instruction 2running speed							
Pn131	Internal position	0~3000	100	r/min	Р			
	instruction3 running speed							
	When the internal position i	When the internal position instruction N is executed, the maximum speed at which						
	the motor can run is define	d.						

No.	Name	Range of values	Default value	Unit	Apply	
Pn132	Torque / speed control	0~1	0		Р	
	switching to position					
	control					
	In dual mode control, when the control mode is switched from torque or speed					
	mode to position control (H	Pn002=3 or 4), to a	void severe mecha	anical shoc	k, the	
	switch should be switched	at a lower speed.	Set the condition	on for swit	ching:	
	Setting value Function					
	0	(zerospeed))			
	1	Decelerate t	co zero			

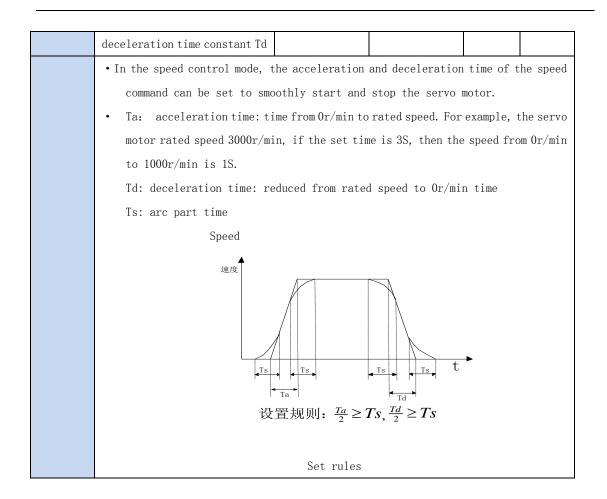
No.	Name	Range of	Default value	Unit	Apply		
		values					
	Torque / speed control switching	5-10000	100	ms	Р		
	to position control deceleration						
Pn133	time						
	Pn132=1, when the Cmode signal is valid, indicating that the control mode is						
	switched from torque or speed cont	rol to position o	control, the moto	r is dece	lerated		
	to zero first and then switched t	to zero first and then switched to position control mode. See the appendix B for					
	specific timing.						


No.	Name	Range of	Default value	Unit	Apply
		values			
	Fixed length displacement	0~1	0		Р
	direction				
Pn134	When the fixed length is	moved, the dired	ction of the moto	r rotati	on must
	be determined before the Si	gIn:Pdistance is	triggered:		
	•0 : according to the curr	ent motor speed	to determine the	e fixed [length,
	displacement, rotation	direction. The cu	urrent rate is mo	re than O	, fixed
	length displacement fo	rward (CCW); the	speed of <0, the speed of the	ne fixed	length
	displacement inversion	(CW).			
	•1 : according to the curr	ent motor speed	to determine the	e fixed [length,
	displacement, rotation direction. The speed of >0, the fixed length				
	displacement forward (CCW); the current rate is less than 0, fixed length				
	displacement inversion	(CW).			

No.	Name	Range of values	Default value	Unit	Apply		
Pn135	Fixed length shift height	0~9999	0	Ten	Р		
				thousand			
Pn136	Fixed length shift low	0~9999	100	individual	Р		
	When the SigIn:Pdistanc	e is triggered, th	ne motor sha	aft will rota	te at a		
	distance of Pn135*10000+Pn1	distance of Pn135*10000+Pn136 (pulse). The moving direction of the motor is					
	determined by Pn134.						

No.	Name	Range of values	Default value	Unit	Apply	
Pn137	Maximum running speed at fixed	$10^{\sim}5000$	200	r/min	Р	
	length					
	The maximum speed at which the motor is allowed to run during a fixed length.					

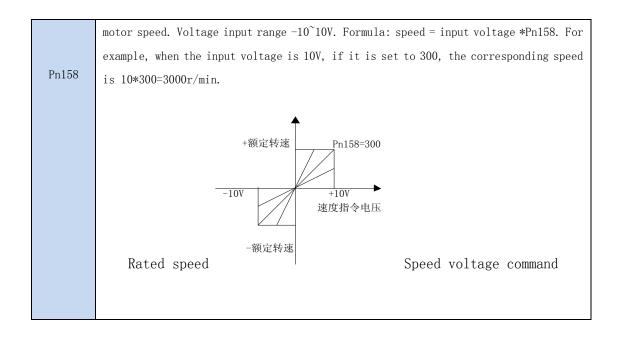
No.	Name	Range of	Default	Unit	Apply	
		values	value			
Pn138	Fixed length locking release	0~1	1		Р	
	After the fixed length shift is com	pleted, the mo	otor is in	a fixed	length	
	locking state, and is the normal respon	se position in	nstruction	. There	are two	
	ways of releasing the motor:					
	• 0: no need to lock the signal, after	the completion	on of fixe	d displa	cement,	
	immediate response to position instruc	ctions.				
	•1: must wait for the input port signal, the SigIn:Punlock signal is effective,					
	only then can respond the position ins	struction.				


No.	Name	Range of	Default	Unit	Apply		
		values	value				
Pn139	Vibration suppression ratio at stop	10~100	100	%	Р		
Pn140	The wait time is suppressed when the	$0^{\sim}30000$	300	ms	Р		
	vibration is stopped						
Pn141	Vibration suppression conditions at	0~10000	10	pulse	Р		
	stop						
	The servo gain increases to a consid	lerable extent	, although	ı vibrati	on does		
	not occur when moving, but vibration ma	ay occur after	the stop	. This fu	unction		
	works only at stop time and suppresses vibration by reducing servo gain.						
	Residual impulse						

4.3.3 Speed control parameter

No.		Name	Range of values	Default value	Unit	Apply	
	Spe	eed command plus	0~2	1		S	
	dec	eleration mode					
Pn146◆		Setting value	Function				
		0	NO Acceleration and deceleration				
		1	S curve accelera	tion and deceler	ation		
		2	Linear accelerat	ion and decelera	tion		
	Thi	This parameter should be set to 0 in the speed control mode with an external					
	pos	ition loop.					

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn147◆	Speed command, S curve,	5^{\sim} 1500	80	ms	S
	acceleration and				
	deceleration time constant Ts				
Pn148◆	Speed command, S curve,	5~ 10000	80	ms	S
	acceleration time constant,				
	Ta				
Pn149◆	Speed command, S curve,	5^{\sim} 10000	80	ms	S



No.	Name	Range of values	Default value	Unit	Apply		
Pn150◆	Linear acceleration time	5~30000	80	ms	S		
	constant						
Pn151◆	Linear deceleration time	5~30000	80	ms	S		
	constant						
	The acceleration time consta	nt is defined as th	e time that the s	peed comma	nd rises		
	from zero to the rated spee	d.					
	额	定转速					
	Pn150 Pn151 时间						
	Rated speed	ľ		time			

No.	Name	Range of values	Default value	Unit	Apply			
Pn152	Speed detection filter time	1~380	1	0.1ms	A11			
	constant							
	The greater the parameter value, the smoother the speed is detected, but the							
	slower the rate response. Too large to cause oscillations; too small to cause noise.							

No.	Name	Range of	Default value	Unit	Apply		
		values					
Pn153	Speed regulator proportional	1^{\sim} 2000	80	Hz	A11		
	gain 1						
Pn154	Speed regulator integration time	1^{\sim} 5000	150	0.1ms	A11		
	constant 1						
Pn155	Speed regulator proportional	1^{\sim} 2000	80	Hz	A11		
	gain 2						
Pn156	Speed regulator integration time	1^{\sim} 5000	150	0.1ms	A11		
	constant 2						
	• The gain of the speed loop controller	directly determine	s the response band	width of th	e speed		
	control loop, and increases the speed lo	oop gain when the r	mechanical system o	loes not ger	nerate		
	vibration or noise, and the speed respo	nse is accelerated.					
	• The integral time constant is used to adjust the compensation speed of steady state						
	error, reduce parameter value, re	educe speed contr	ol error and inc	rease rigi	dity. Too		
	small, easy to cause vibration a	nd noise.					

No.	Name	Range of values	Default value	Unit	Apply		
Pn157▲	Simulated speed, instruction	$1^{\sim}500$	1	0.1ms	S		
	smoothing, filtering time						
	The larger the set value, the slower the input analog response speed is, which						
	is beneficial to reduce the high-frequency noise interference. The smaller the set,						
	the faster the response rate, bu	t the interferenc	e noise will bec	ome larg	ger.		
No.	Name	Range of values	Default value	Unit	Apply		
	Analog speed command gain	$1^{\sim}1500$	300	r/min	S		
	/V						
	The proportional relationshi	p between analog	speed, command i	nput and	l actual		

No.	Name	Range of values	Default value	Unit	Apply			
	Analog speed shift adjustment	$-5000^{\sim}5000$	0	mv	S			
	• The analog input may have an offset that can be compensated by this parameter.							
Pn159	• Automatically adjust the offset to perform Fn008 operations.							
	• Manually adjust the offset	step as follows:						
	1: the external 0 potential	access analog inp	out port					
	2: set this parameter to 0	and observe the va	alue displayed by	the dnl	7 in the			
	monitor mode.							
	3: if the observation value	is not 0, input no	egative observat:	ion value	e to this			
	parameter, then can realiz	e the adjustment	(pay attention to	o voltag	e unit			
	conversion relation).							
	Example: dn17=1.12V, Pn159, en	ter -1120mv.						

No.		Name		Range of	Default value	Unit	Apply
				values			
	Anal	og speed directi	on	0-1	0		S
Pn160	Setting v		Function				7
riiitoo		0	0 Positive voltage forward (CCW), negative voltage				
			reversal (C	W)			
		1	Negative vo	ltage forward (C	CCW), positive vo	oltage	
							_

No.	Name	Range of values	Default value	Unit	Apply			
Pn161	Analog speed command force zero	0~1000	0	10mv	S			
	interval upper limit							
Pn162	Analog speed command forced zero	$-1000^{\sim}0$	0	10mv	S			
	interval lower bound							
	• When the input speed command is between the lower limit and the upper limit, the							
	input command is forced to 0 V.							
	 At this point the input voltage Through the setting of the up be changed into unipolar and bip a lower limit of -1000, equivalen positive speed command. 	per and lower li plar instruction	mits, the input s. Example: an u	instruct pper lim	ions can it of O,			

No.	Name	Range of	Default value	Unit	Apply
		values			

	Zero speed clamping lock mode	0-1	0		S				
	• 0: when locking, clamping mode is the position loop control, the intervention								
Pn163	of the internal loop control, through the Pn167 set gain.								
	• 1: when locking, clamping met	hod is speed loop	p control, speed	command	is O, the				
	position may be changed because	of external forc	ce.						

No.		Name		Range of	Default value	Unit	Apply		
				values					
	Zero spee	ed clamping trigg	er mode	0~1	0		S		
Pn164		Setting value	C: ala	function					
		0	_	port ZeroLocK					
		1 The speed command is triggered when it is lower							
			than t	he Pn165 para	neter				
No.		Name	Ran	ge of values	Default value	Unit	Apply		
	Zero spe	ed clamping leve	1 0~2	00	6	r/min	S		
	The r	notor shaft is lo	ocked wh	en the Pn164 i	s set to 1 and th	e speed co	ommand is		
Pn165	lower that	an the parameter	value.	Example: this	parameter is set	to 10r/mi	n. If the		
	analog s	peed command is :	in the r	ange of -10r/m	$\min^{10r/min}$, the o	decelerat	ion clamp		
	is used t	to prevent the an	alog sp	eed command fr	om drifting near	zero, rest	ulting in		
	the inst	ability of the m	otor sh	aft.					

No.	Name	Range of	Default value	Unit	Apply					
		values								
Pn166	Zero speed clamping deceleration	$5^{\sim}10000$	50	ms	S					
	time									
	After the zero speed clamp is triggered, decelerate immediately to zero at the									
	deceleration time and then lock.	deceleration time and then lock.								

	No.	Name	Range of values	Default value	Unit	Apply
Р	n167	Internal position regulator gain	1-2000	100	1/S	A11

No.		Name		Range of values	Default value	Unit	Apply		
Pn168	-	ed command source ection		0~2	0		S		
	(Optional optional speed command source in speed control mode:							
		setting value			Fnction				
		0	Exter	nal analog speed	command + inter	nal speed	2~8		
		1	1 Internal speed 1 ~8						
		2	Motio	n controller analog voltage command					

No.	Name	Range of values	Default value	Unit	Apply
Pn169	Internal speed command 1	-5000-5000	0	R/min	S
Pn170	Internal speed command 2	-5000-5000	0	R/min	S
Pn171	Internal speed command 3	-5000-5000	0	R/min	S
Pn172	Internal speed command 4	-5000-5000	0	R/min	S
Pn173	Internal speed command 5	-5000-5000	0	R/min	S
Pn174	Internal speed command 6	-5000-5000	0	R/min	S
Pn175	Internal speed command 7	-5000-5000	0	R/min	S
Pn176	Internal speed command 8	-5000-5000	0	R/min	S

Whe	n the d	drive c	ontrol mode is in the speed control mode, the source of the			
speed	comman	d is de	etermined by SP1, SP2, SP3 of the input port SigIn:			
SP3	SP2	SP1	Speed command			
0	0	0	Internal speed 1/ external analog speed command			
			(determined by Pn168)			
0	0	1	Internal speed 2			
0	1	0	Internal speed 3			
0	1	1	Internal speed 4			
1	0	0	Internal speed 5			
1	0	1	Internal speed 6			
1	1	0	Internal speed 7			
1	1	1	Internal speed 8			
Note 1	:0 ind	icates	OFF, and 1 stands for ON.			
	Note 2: if the SigIn port does not specify SP3, SP2, and SP1 functions, the default is the OFF state.					

No.	Name	Range of	Default value	Unit	Apply		
		values					
Pn177	JOG speed	$0^{\sim}5000$	200	r/min	S		
Pn178♦	JOG Acceleration time	5^{\sim} 10000	100	ms	S		
Pn179◆	JOG Deceleration time	5^{\sim} 10000	100	ms	S		
	When inching test run, the speed of motor operation and the time of acceleration						
	and deceleration can be set.						

No.	Name	Range of	Default value	Unit	Apply				
		values							
Pn182	Speed loop PDFF control factor	0~100	100	-	PS				
	This parameter determines the control structure of the speed loop.								
	Pn182=100, for the PI control structure; Pn182=0, for the I-P control.								

No.	Name	Range of values	Default value	Unit	Apply
$Pn183^{\sim}$	Speed feedback compensation	$0^{\sim}100$	0	%	PS
	The feedback speed is compensated, and the greater the compensation value is, the more noise the motor will make.				

4.3.4 Torque control parameter

No.	Name	Range of values	Default value	Unit	Apply
	Torque command	$0^{\sim}1$	0		Т
	acceleration and				
Pn186	deceleration mode				
	Setting value	tting value Function			
	0	Do not use torque command to speed up and down			
	1	Using torque command,	, linear accelera	ation and	
		deceleration			

No.	Name	Range of values	Default value	Unit	Apply
	Torque command linear	1~30000	1	ms	Т
	acceleration and deceleration				
	time constant				
Pn187▲	The time constant is defined as	, the time that the	e torque command	rises fi	rom zero
F11107 📥	straight to the nominal torque				
	Rate 额 定 转 矩	d torque	time		

No.	Name	Range of values	Default value	Unit	Apply
Pn188.	Simulated torque command	$1^{\sim}500$	5	0.1ms	Т
	smoothing filtering time				
	The larger the set value, the slower the input analog response speed is, which				
	is beneficial to reduce the high-frequency noise interference. The smaller the			ler the	
	set, the faster the response rate	e, but the interf	erence noise will	become 3	larger.

No.	Name	Range of	Default value	Unit	Apply	
		values				
	Analog torque command gain	1-300	30	%/V	Т	
	The proportional relations	nip between the a	analog torque co	mmand in	put and	
	the actual output torque of the	motor. Voltage i	nput range -10~1	OV. The	default	
	input voltage is 10V, and the m	notor reaches 3	times the rated	torque,	i.e.,	
	Y=KX=30X, K=30.					
Pn189	Torque command					
	转矩指令% 300 200 -100 -100 -100 -100 -100 -100 -10					
	input voltage					

No.	Name	Range of	Default value	Unit	Apply
		values			
Pn190	Analog torque command offset	$-1500^{\sim}1500$	0	mv	Т
	adjustment				
	Adjustment mode reference "anal	og speed command	l offset adjustme	ent"	

No. Name Range of	values Default value Unit
-------------------	---------------------------

	Analog	torque di	rection	0-1	0		Т	
Pn191		Setting value		Function				
	0 Positive voltage forward (CCW), negative voltage reversal (C			(CW)				
		1	Negative voltag	e forward (CCW), po	ositive voltage i	nversion	(CW)	

No.	Name	Range of values	Default value	Unit	Apply
Pn192	Torque Q shaft regulator	5^{\sim} 2000	100	%	A11
	proportional gain 1				
Pn193	Torque Q axis regulator	$5^{\sim} 2000$	100	%	A11
	integration time constant 1				
Pn194	Torque Q shaft regulator	$5^{\sim} 2000$	100	%	A11
	proportional gain 2				
Pn195	Torque Q axis regulator	$5^{\sim} 2000$	100	%	A11
	integration time constant 2				
	• Increasing the proportional gain can speed up the Q axis current response.				
	• Reducing the integral time cons	stant can reduce th	ne Q axis current	control	error.

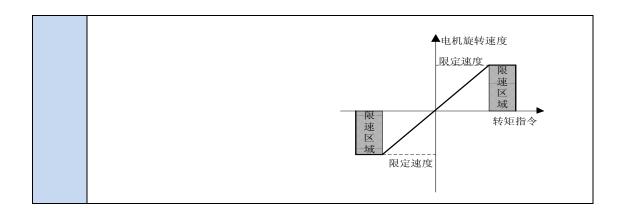
No.	Name	Range of	Default value	Unit	Apply
		values			
Pn196	Torque instruction filtering	$1^{\sim}5000$	40	0.01m	A11
	time constant 1			S	
Pn197	Torque instruction filtering	$1^{\sim}5000$	40	0.01m	A11
	time constant 2			S	
	The mechanical vibration	can be suppresse	d, the greater th	ne set va	lue, the
	better the effect, resulting	in slower respon	nse to the meeti	ng, may	cause
	oscillation; the smaller the set value, the faster the response, but limited by				
	mechanical conditions.				

No.	Name	Range of values	Default value	Unit	Apply
Pn198	Limiting speed during torque	$0^{\sim}4500$	2500	r/min	Т
	control				

In torque control, the motor speed is limited within this parameter range.
It can prevent overspeed during light load. When speeding occurs, the
intervention speed control reduces the actual torque, but the actual speed will
be slightly error.

No.		Name			Range of	Default value	Unit	Apply	
					values				
	Torque	contro	ol, limi	ted	0~2	0		Т	
	speed, source selection			ion					
	S	etting	value			Function			
		0		Subj	ect to parameter	r Pn198 limit.			
		1		Subj	ect to the inter	rnal speed commar	nd 1~8 1:	imit.	
		2		If P	n204=1, that is,	all torque comm	ands ori	ginate	
				from	the internal to	orque command, th	ie speed	can be	
Pn199				limi	ted by analog vo	oltage, speed, an	d instru	uction.	
	• All of these speed limits are positive and negative, and multiple spee occur, subject to minimal speed.								
	SP3	SP2	SP1	Speed co	mmand				
	0	0	0	Internal	ternal speed 1				
	0 0 1 Int			Internal	ternal speed 2				
	0	1	0	Internal	speed 3				
	0	1	1	Internal	speed 4				
	1 0 0 Int			Internal	ernal speed 5				
	1	0	1	Internal	nal speed 6				
	1	1	0	Internal	rnal speed 7				

	1	1	1	Internal speed 8						
	• If this parameter is set to 1 and limited by the internal speed command, the Sp1, SP2, and SP3 determine the limited speed value:									
	0 s	0 stands for OFF, and 1 means ON.								
	• Even	if the	parame	ter settings exceed the maximum speed allowed by the system	m,					
	the act	tual sp	eed wi	ll be limited to the maximum speed.						


No.		Na	me		Range of values	Default value	Unit	Apply		
Pn200	Interna	Internal torque 1			$-300^{\sim}300$	0	%	Т		
Pn201	Interna	Internal torque 2			-300~300	0	%	Т		
Pn202	Interna	l torq	ue 3		$-300^{\sim}300$	0	%	Т		
Pn203	Interna	l torq	ue 4		-300~300	0	%	Т		
	When se	lectin			torque control mo		using th	ne input		
	port SigIn can select 4 torque commands:									
	TR2 TR1 Torque				command					
		0	0	Intern	rnal torque 1 or external analog torque					
				instru	ruction (determined by Pn204)					
		0	1	Intern	al torque 2					
		1	0	Intern	al torque 3					
	1 1 Intern				al torque 4					
	Note 1:0 indicates OFF, and 1 stands for ON							de feu la		
	Note 2: if the SigIn port does not use the specified TR2, TR1 function, the default is the OFF state.							derault		
	is the	UFF st	ate.							

No.	Name			Range of values	Default value	Unit	Apply
	Torque command source			0~2	0		Т
							_
	Setting value			Function			
		0	Ex	External analog torque command.			

Pn204	1	Internal torque 1.
	2	Motion controller analog voltage command.

No.	Name	Range of	Default value	Unit	Apply			
		values						
Pn205	Torque D axis regulator;	5~2000	100	%	A11			
	proportional gain							
Pn206	Torque D axis regulator,	5~2000	100	%	A11			
	integral time constant							
	In space vector modulation, the proportional gain and integral time constant of the							
	regulator of the torque D axis.							

No.	Name	Range of	Default value	Unit	Apply		
		values					
	Speed feedback adjustment factor	$1^{\sim}3000$	100		Т		
	In torque control, the motor sp	eed is outside t	he defined speed	l range,	and the		
	intervention speed feedback is applied to reduce the actual torque, so that the speed						
	is returned to the limited speed range. Parameter setting is smaller, the greater the						
	amount of feedback, adjust more quickly, the difference with the speed limit is small,						
Pn207	but too small may cause motor jitter; parameter setting is too large, adjust more						
	slowly, there may have been no limiting speed. The actual speed will be slightly higher						
	than the specified speed.						

No.	Name	Range of	Default value	Unit	Apply	
		values				
Pn208	1Tracking torque instruction	0~300	5	%	Т	
	to determine range of error 1					
Pn209	2Tracking torque instruction	0~300	2	%	Т	
	to determine range of error 2					
	To make the SigOut port TCMDreach signal output valid, the following					
	conditions must be met:					
	Condition 1: the torque instruc	ctions set by the	e upper computer	must be	within	
	1 of the error range. H	Example: the inpu	ut torque comman	d 80%, P	n208 is	
	set to 5%, the driver of	of the internal	torque input spe	ed plus	and	
	deceleration operations	s, when the outp	ut torque calcul	ation		
	instructions in the 759	$\%^{85\%}$ range, the	condition 1 is	met.		
	Condition 2: the difference bet	ween the actua	l motor torque a	and the i	input	
	torque command is within 2 of	the error range				

No.	Name	Range of	Default	Unit	Apply		
		values	value				
Pn210	Decision time for speed limited	0~2000	15	ms	Т		
	output						
	In the torque control mode,	when the motor s	peed exceeds th	e maximu	m speed		
	limit value and the speed limit	ing function is	continued with	in the d	ecision		
	time, the SPL function signal of the SigOut port is output ON to reduce the						
	frequent inversion of the signa	ıl.					

4.3.5 Extended control parameter

No.	Name		Range of values	Default value	Unit	Apply
	Absolute encoder usage selection		0~1	1		A11
Setting value			Function			
	0	Single loop absolute encoder				
	1	Multi loop absolute encoder				
Pn216▲	2	Motion controller analog voltage command.				
	When there is no externation. This parame				ti circl	e

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn217	Absolute encoder output line	16~16384	2500	line	A11
	• A pulse transmitted from the outs	ide of the se	rvo unit. The h	igher th	e output
	line, the higher the maximum frequenc	y (Max=1.6Mhz) of the A and B	orthogon	al pulse
	signals, and the higher the requirements for the pulse receiver circuit of the				
	host computer. A poor reception cir	cuit will suf	fer from pulse	missing	5.
	• By default, Pn217=2500, that is,	the motor rot	ates one turn,	the ser	rvo unit
	outputs 2500*4=10000 pulses.				
No.	Name	Range of	Default	Unit	Apply
		values	value		
	Absolute position data transfer	0~1	0		A11
	mode for absolute encoder				

	When Pn216 is set t	o 1, that the use of multi ring absolute encoder data, and				
	the absolute encoder	is equipped with batteries, multi turn absolute position				
Pn218	information at this ti	me will output the correct; if $Pn216$ is set to 0, the output				
	of the multi ring posi	tion information for 0. See the use of absolute servo units				
	in chapter tenth".					
	Setting value	Function				
	Setting value	T the tron				
	0	The incremental mode outputs the absolute position				
		information of the circle and the absolute position				
		information of the single circle				
	1 Digital encoding outputs absolute position					
		information and single loop absolute position				
		information				

No.		Name	Range of values	Default value	Unit	Apply	
	Multi	turn overflow detection	0~1	1		A11	
	for a	bsolute encoder					
	When used as a multi loop absolute encoder, if the motor is always running in						
Pn219	single direction, it may lead to multi circle data overflow. This parameter can						
Pn219	set t	o turn off the overflow a	larm.				
		Setting value		Function			
	0 Multi circle overflow alarm not detected					l	
		1	Multi circle ove	rflow alarm dete	ction		

No.	Name	Range of values	Default value	Unit	Apply	
Pn234	Maximum pulse command frequency	20~2000	550	KHZ	Р	
	When the instruction pulse frequency exceeds the set value, the driver sends out					
	an alarm.					

No.	Name	Range of	Defaul	t	Unit		Apply
		values	value	,			
Pn235	Pulse instruction digital filtering	$0^{\sim}255$	0		100ns	Р	
	time						
	• The input instruction pulse is filtered digitally to filter the noise on the signa						ne signal
	line.						
	• The greater the setup time, the low	er the maximu	m pulse fre	equen	cy. Syste	em c	lefaults,
	allowing maximum 550KH frequencies to	be received.	Filter t	ime mu	ıst be le	ft a	a certain
	margin, otherwise there may be lost	pulse phenor	nenon.				
No.	Name	Range of	Default		Unit		Apply
		values	value				
Pn236	Absolute encoder, forward soft	0~32000	0	-	-circle		A11
	forbidden, multi circle value						
Pn237	Absolute encoder, forward soft	0~10000	0	0.0	0.0001circle		A11
	forbidden, single coil value						
Pn238	Absolute encoder, reverse soft	0~32000	0		circle		A11
	forbidden, multi circle value						
Pn239	Absolute encoder, reverse soft	0~10000	0	0.0	001circl	е	A11
	inhibit, single coil value						
	• For servo motors with absolute end	coders, use t	the encode	r's m	ulti tur	n f	unction
	(Pn216=1) and use software driver d	isable functi	ion. The s	oft d	lisable f	unc	tion is
	equivalent to a drive disable function	n triggered b	oy an exter	mal p	ort (CCW	L, (CWL) that
	can be used in conjunction with the	P007 and Pn0	077 parame	ters.			
	•When the parameter is set to O (de	efault), the	soft disa	ble f	unction	is	invalid.
	Otherwise, when the number of turns of						
	function will be triggered. Example: P						
	function when the motor is rotated :	forward beyon	nd the 100	+5000	*0.0001=	100	.5 loop.

No.	Name	Range of	Default	Unit	Apply		
		values	value				
Pn257	Load inertia ratio	0~100.00	1.00	times	PS		
	Load torque ratio = (JL of motor shaft translation) (/ rotor inertia (Jm)). When						
	leaving the factory, the servo motor is assumed to have a double load inertia state.						

No.	Name	Range of	Default	Unit	Apply
-----	------	----------	---------	------	-------

				values	value			
	Gain a	adjustment mode		$0^{\sim}1$	0	-	PS	
Pn258		Setting value		Function				
		0	Manual gain ad	Manual gain adjustment.				
		1	For automatic gain adjustment, see the chapter on				n	
			"operation and	adjustment".				

No.	Name	Range of	Default	Unit	Apply	
		values	value			
Pn259	Rigid grade selection	0~20	5	_	PS	
	The higher the rigidity, the faste	r the servo re	esponse, but t	he higher	rigidity	
	will cause the motor vibration. The method of setting is detailed in the chapter					
	"operation and adjustment".					

No.		Name		Range of	Default	Unit	Apply
				values	value		
	Real-t:	ime estimation m	ethod of	$0^{\sim}1$	0	_	A11
	inertia	a					
Pn260							
		Setting value		Functi]		
		0	Off-line iner	tia estimatio	n. Identifica	ation of	
		inertia by Fn018 operation.					
		1 On-line inertia estimation. When the motor is					
		running, the real-time estimation is made and the					
			load inertia	ratio is chec	ked by Dn030.		

No.	Name	Range of	Default	Unit	Apply
		values	value		
Pn263◆	Inertia estimation acceleration and	$20^{\sim}500$	80	ms	A11
	deceleration time				
Pn264◆	Inertia estimation allows maximum	150~1000	400	r/min	A11
	speed				

Pn265◆	Inertia estimation pause interval	$0^{\sim}10000$	500	ms	A11		
Pn266◆	Inertia estimation; inertia ratio;	1.00~20.00	3.00	times	A11		
	prediction value						
	See system reliability identification in chapter "operation and adjustment".						

No.	Name	Range of	Default	Unit	Apply		
		values	value				
Pn267▲	Rated torque of motor	0~32000	0	0. 1N. m	A11		
Pn268▲	Maximum output torque of motor	0~32000	0	0. 1N. m	A11		
Pn269▲	Jm Motor rotor moment of inertia Jm	0~32000	0	Kg •M^2 •10^-4	A11		
Pn270▲	Maximum motor speed	80~5500	80	r/min	A11		
	Must be set according to motor nameplate parameters. The wrong parameter						
	setting will affect the motor performance, resulting in abnormal rotation of the						
	motor. By default, drive the intern	al parameters	s of the d	rive.			

4.4 Port function detail

4.4.1 SigIn input port function detailed

NO.	Symbol	Function	Function description
0	NULL	Nonfunctional	The drive does not generate any action on the input
		assignment	state.
1	Son	Servo enable	OFF: the drive doesn't work, the motor doesn't work.
			ON: driver enable, motor powered
			Note: the Pn003 parameter or the Son status is
			determined.
2	AlarmRst	Alarm reset	When the alarm is on, and when the alarm can be cleared,
			the input signal rising edge (OFF to ON) is used to
			clear the alarm.
3	CCWL	Forward drive inhibit	OFF: prohibits the motor going forward
			ON: allow the motor to turn
			Note 1: if you want to use the forward drive disable
			function, first set the Pn006 parameter, turn on the
			function, and then specify the specific input port.
			By default, this function is not used.

		1	1				
			Note	2: whe	n the	e moto	or is in normal operation, the CCWL
			must	be in	norm	nally	v closed contact (ON state)
			Note	3: thi	s fur	nctio	on is invalid when origin returns.
4	CWL	Reverse drive inhibit	OFF:	prohil	oits	moto	or inversion
			ON: a	allow t	the n	notor	r to reverse
5	TCCW	External forward	OFF:	CCW to	rque	isr	not limited by the Pn010 parameter
		torque limit	ON: 0	CCW di	recti	ion t	corque is limited by the Pn010
				para	neter	r	
			Note	no ma	tter	whet	ther TCCW is valid or invalid, the
			CCW o	lirect	ion t	torqu	ue is limited by the Pn008
			para	neter.			
6	TCW	External reverse	OFF:	CW tor	que	is n	ot limited by the PnO11 parameter
		torque limit	ON: 0	CW dire	ectio	on to	orque is limited by the PnOll
				para	neter	r	
			Note	e: no m	atte	r whe	ether TCW is valid or invalid, the
			CW o	lirect	ion t	torqu	ue is limited by the Pn009
			para	ameter.			
7	EMG	Emergency shutdown	OFF:	prohil	oits	driv	ve drive motors, cutting motor
				currei	nts		
			ON: a	allows	driv	vers	to drive motors normally
8	ZeroLock	Zero speed clamping	Speed	l conti	rol:		
			OFF:	does 1	not l	lock	the motor shaft
			ON :	Lock	the n	notor	: shaft
9	SP1	Internal speed	When	the d	river	r's c	control mode is in speed control
		command select 1	mode,	the s	sourc	ce of	speed instruction is determined
10	SP2	Internal speed	by SI	P1, SP2	2 and	d SP3	3 of SigIn:
		command select 2	SP3	SP2	S	SP1	Speed command
11	SP3	Internal speed	0	0	0)	nternal speed 1
		command select 3					external analog
							Speed command (Pn168
							selection)
			0	0	1		Internal speed 2
			0	1	0)	Internal speed 3
			0	1	1		Internal speed 4
			1	0	0)	Internal speed 5

				1	0		1	Internal speed 6	
				1	1		0	Internal speed 7	
				1	1		1	Internal speed 8	
			No	Note 1:0 indicates OFF, and 1 stands for ON. $% \left({{\left({{{\left({{{\left({{{}}} \right)}} \right)}} \right)}} \right)$					
			No	ote 2:	if	the	SigI	n port does not specify SP3, SP2,	
			an	nd SP	l fu	ncti	ons,	the default is the OFF state.	
12	TR1	Internal torque	Se	elect	the	int	erna	l torque control mode, the use of	
		command select 1	TR	R1, TI	R2 co	ombi	natio	on, you can select 4 torque	
13	TR2	Internal torque	сс	ommano	ls.				
		command select 2		TR2	T	R1	Tor	cque command	
				0	0		Int	ernal torque 1/ external analog	
							tor	que command (Pn204 selection)	
				0	1		Int	ernal torque 2	
				1	0		Int	ernal torque 3	
				1	1		Int	ernal torque 4	
			No	ote 1	:0 in	ndic	ates	OFF, and 1 stands for ON	
			No	ote 2:	if	the	SigI	n port does not use the specified	
			TF	R2, TI	R1 fu	unct	ion,	the default is the OFF state.	
14	Cmode	Control mode	Wh	nen tł	ne pa	ram	eter	Pn002 is 3, 4, and 5, control mode	
		switching	SW	vitch	ing (can	be ca	arried out.	
15	Cgain	Gain switching	Wh	nen th	ie pa	ram	eter	Pn045 is 2, the Cgain switches the	
			ga	ain co	ombiı	nati	on:		
			OF	FF: f:	irst	gai	n		
			ON	V: see	cond	gai	n		
16	Gn1	Electronic gear	1^	4 Sel	ect	the	elec	tronic gear molecule Gn2 through	
		molecule selection 1	th	ne cor	nbina	atic	on of	Gn1 and 1~4	
17	Gn2	Electronic gear		Gn2	Gı	n1	Ele	ctronic gear ratio, molecular	
		molecule selection 2					Ν		
				0FF	OI	FF	Fir	st molecule	
				0FF	01	N	Sec	ond molecule	
				ON	OI	FF	Thi	rd molecule	
				ON	01	N	Fou	rth molecule	
18	CINV	Instruction fetch	In	n spee	ed or	to:	rque	control mode, the speed or torque	
			is	s reve	erse	d.			
			OF	FF: no	orma	l in	nstru	ction	

			ON: instruction is reversed				
19	Pclear	Clearance of position	Clears the value of the position counter, and the				
		deviation	clearing method is determined by the Pn108 parameter:				
			Pn108 mode				
			0 Pclear Level ON period				
			1 Pclear rising edge time (from OFF to ON)				
20	INH	Pulse input inhibit	OFF:The input command pulse is valid				
			ON: the input command pulse is invalid and ignored				
21	PC	Proportional control	The speed loop is the PI control structure				
			(Pn182=100):				
			OFF: speed loop PI control				
			ON: speed loop P control				
22	GOH	Origin regression	See Appendix F for details				
		trigger					
23	REF	Origin regression					
		reference point					
24	Pos1	Internal location	See Appendix G for details				
		selection posl					
25	Pos2	Internal location					
		selection pos2					
26	ptriger	Trigger internal					
		position command					
27	pstop	Pause internal					
		position command					
28	Psource	Internal and external	At Pn117=2, the source of the pulse command is				
		position instruction	determined by the Psource:				
		selection	OFF: external location command				
			ON: Internal position command				
29	Pdistanc	Fixed length	When SigIn:Pdistance is changed from On to Off, the				
	е	displacement	drive will perform a fixed length function, as shown in				
		interrupt	Appendix H				
30	Punlock	Fixed length unlock	At Pn139=1, the servo is in a fixed length lock state				
			after a long distance, and the drive can respond to the				

			position instructions only when the sigIn:Punlock is longer than Off from the On. See Appendix H for details
31	Sen	Absolute location	For absolute position information of absolute encoder
		requestAbsolute	for upper computer, see the use of absolute servo unit
		location request	in the tenth chapter"

4.4.2 SigOut output port function detailed

NO.	Symbol	Function	Function description
0	null	Nonfunctional	
		assignment	
1	Alarm	Alarm detection	OFF: alarm
			ON: No alarm
2	Ready	Servo ready	OFF: has alarm or a fault
			ON: no alarm and fault
3	Emg	Emergency stop	OFF: Not in an emergency stop
		detection	ON: in an emergency stop
4	Preach	Location	Position control mode
		complete	OFF: position deviation is greater than the value
			set by the parameter Pn104
			ON: position deviation is less than the value set
			by the parameter Pn104
5	Sreach	Speed arrival	OFF: speed is less than the value set by Pn021
			ON: the speed is greater than or equal to the
			value set by Pn021
6	Treach	Arrival torque	OFF: torque less than Pn024 setting value
			ON: torque greater than or equal to the value set
			by Pn024
7	ZeroSpeed	Zero speed	OFF: speed is greater than the value set by Pn027
			ON: the speed is less than or equal to the value
			set by Pn027
8	Run	Servo motor	OFF: motor is not energized
		energized	ON: motors are energized
9	BRK	Electromagneti	OFF: electromagnetic brake
		c braking	ON: electromagnetic brake release

10	HOME	Origin	See Appendix F for details
		regression	
		complete	
11	Pnear	Positioning	In position control
		approach	OFF: position deviation is greater than the value
			set by the parameter Pn106
			ON: position deviation is less than the value set
			by the parameter Pn106
12	TRQL	Torque limit	OFF: motor torque is not limited
			ON: motor torque is limited
			When the torque command reaches the minimum
			parameter value in Pn008, Pn009, Pn010, and
			Pn011, the TRQL is ON.
13	SPL	Speed limit	Torque control
			OFF: motor speed is not up to the limit
			ON: motor speed has reached the limit value
			See Pn198, Pn199 for instructions
14	TCMDreach	Tracking torque	At torque control:
		command arrives	$\ensuremath{OFF}\xspace$: the motor torque does not reach the torque
			command value set by the upper computer
			$0\ensuremath{\mathrm{N}}\xspace$ the motor torque reaches the set torque
			command value set by the upper computer, See
			the Pn208 and Pn209 instructions

The fifth chapter monitoring parameters and operation

5.1 Monitor panel operation

See the "monitor mode" operation in chapter third".

5.2 List of monitoring parameters

NO.	Explain
dn-00	Monitor display options (default for motor speed) by setting the Pn079 parameter so that the
	dn-00 displays different monitoring states.
dn-01	Speed command (unit: r/min)
dn-02	Average torque (unit:%)
dn-03	Position deviation (-9999~9999) (unit: bit)
dn-04	AC power supply voltage (unit: volt)
dn-05	Maximum instantaneous torque (unit:%)
dn-06	Pulse input frequency (unit: KHZ)
dn-07	Temperature of radiator (unit: Celsius)
dn-08	Current motor speed (unit: r/min)
dn-09	Effective input instruction pulse accumulated value low (-9999~ 9999) (unit: bit)
dn-10	Effective input instruction pulse accumulated value high (-5000~5000) (unit: 10000bit) (pulse
	accumulation value is higher than + 5000, then high position 0, low bit unchanged, count
	again)
dn-11	In position control, the effective feedback pulse accumulated value of encoder is low
	(-9999~9999) (unit: bit)
dn-12	Position control, the encoder effective feedback pulse accumulation value high (-5000~5000)
	(unit: 10000) (feedback pulse accumulation value is higher than + 5000, then high position 0,
	low bit unchanged, re count)
dn-13	Regenerative braking load rate
dn-14	The input port signal status, from left to right, is SigIn1~SigIn10 (the upper half of the digital
	tube is bright: high level, lower half is bright: low level)
dn-15	The output port signal status, from left to right, is SigOut1~SigOut5 (the upper half of the
	digital tube is bright: high level, lower half is bright: low level)

s) s) 999~9999)
·
999~9999)
999~9999)
6000~5000)
then high
gnal (1: high
inds circle)

Note: the Dn-18 outputs the functional status register, i.e., the functional logic status of the SigOut port, as shown in the table below for each Bit bit:

Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
function	Run	ZeroSpeed	Treach	Sreach	Preach	Emg	Ready	Alarm
Bit	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
function	_	_	TCMDreach	SPL	TRQL	Pnear	HOME	BRK

The Bit bit is 0, which means that the function is ON, and the 1 is the OFF state.

The sixth chapter, alarm and treatment

6.1 Alarm clearing operation

See the "alarm clearing" operation of the auxiliary mode operation in chapter third".

Alarm	Cleanup	Abnormal alarm	Removal method
display	mode	declaration	
AL-01	Power up	Memory contents	1: initialization of the parameters, observe the
	again	corrupted or memory chip	situation.
		corrupted	2: through the Modbus communication mode and
			the button operation mode, edit the operation of the
			parameter simultaneously, which may lead to the
			mistake of the check code and cause the alarm.
			2: internal chip damage, replace servo amplifier.
AL-02	Reset	An alarm that occurs	1: use voltmeter to measure whether the external
		when the DC bus voltage	power supply voltage meets the specifications. If the
		is below 200V when the	specifications are met, the bus voltage correction
		low voltage alarm is not	can be carried out using the auxiliary mode Fn009.
		turned on.	2: through the display panel, enter the monitoring
			mode, observe whether the voltage is consistent
			with the external voltage, if the difference is too
			large, then the internal components damaged,
			replace servo amplifier.
			3: the motor load is large, the starting speed is too
			fast, leading to the internal bus voltage is low. If it is
			a single-phase power supply, please use
			three-phase power supply.
AL-03	Power up	The internal DC bus voltage	1: use voltmeter to measure whether the external
	again	is too high	power supply voltage meets the specifications. If the
			specifications are met, the bus voltage correction
			can be carried out using the auxiliary mode Fn009.
			2: through the display panel, enter the monitoring
			mode, observe whether the voltage is consistent
			with the external voltage, if the difference is too
			large, then the internal components damaged,
			replace servo amplifier.
			3: within a reasonable range, appropriate
			deceleration of small load inertia or extended

6.2 Alert content and Countermeasures

		Γ	
			acceleration and deceleration time, or need
			additional brake resistance.
AL-04	Power up	Intelligent power module	1: check the motor power line U, V, W whether the
	again	generates alarms directly	interphase short circuit or ground short circuit, and
			encoder line is normal connection.
			2: heat sink high temperature, turn off the power, 30
			seconds after the re power, and if the alarm still
			appears, the internal power module may be
			damaged, please replace the servo amplifier.
			3: speed loop and current loop proportional integral
			parameter are not set properly.
AL-05	Reset	Overload 1	In the Pn014 parameter setting, the current is
			continuously greater than the overload power
			parameter Pn012 or the set multiple of the Pn013.
			1: check the motor line U, V, W and encoder line is
			normal.
			2: The acceleration and deceleration frequency of
			the motor is too high to prolong the acceleration and
			deceleration time, reduce the load inertia or change
			the servo motor with greater power capacity.
AL-06	Power up	Overload 2	The Pn015 parameter is set to 3 times longer than
	again		the rated load during the set time. The method of
			elimination referred to overload 1.
			Note: some motors can only withstand 2.5 or 2 times
			the rated load, but not 3 times as the calculation.
AL-07	Reset	Motor speed is too high	1: Check whether the motor line U, V, W and
			encoder line are normal.
			2: Reduce the pulse frequency of input instructions
			or adjust the electronic gear ratio.
			3: The proportional integral parameters of the speed
			ring are adjusted improperly and re-adjusted.
AL-08	Reset	The servo amplifier	1: repeated overload can cause overheating of the
		heatsink is overheated	drive. Please change the way the motor works. To
		and the actual	extend the service life of the server, it should be
		temperature has	used at ambient temperature below 60 degrees, and

	[I	
		exceeded the Pn084	the recommended temperature is not more than 50
		setpoint	degrees celsius.
			2: braking average power overload.
AL-09	Power up	Encoder exception	1: check whether the motor encoder connection is
	again		connected to the driver.
			2: check whether the motor encoder interface weld,
			short-circuit or fall off, the encoder power line is
			connected properly.
			3: check the encoder power supply voltage (5V +
			5%). (the encoder line needs to be paid special
			attention when it is longer)
AL-10	Reset	The actual received pulse	1: reduces the pulse frequency of the input
		frequency is too high to	command
		exceed the Pn234	
		setpoint	
AL-11	Reset	The position pulse	1: check the motor line U, V, W and encoder line is
		deviation is greater than	normal.
		the setpoint	2 :position instruction smoothing time constant is set
			too large.
			3: increases the position loop gain to speed up the
			motor response.
			4: use monitoring mode to see if the motor output
			torque is up to its limit.
			5: internal 32 bit pulse counter overflow.
AL-12	Reset	The current sampling	1: instantaneous current is too large to exceed
		loop may be damaged.	detectable range.
			2: check the motor line (U, V, W) whether it is
			loose, falling or short connection to the
			ground.
			3: sampling loop corrupted, replace servo
			amplifier.
AL-13	Power up	CPU internal fault	1: external interference is too large to reduce
	again		interference.
			2:CPU chip corrupted, replace servo amplifier.
AL-14	Reset	Emergency stop signal is	See if the port has an emergency stop function and

		valid	whether the signal contact is in a normally closed
			state (ON)
AL-15	Reset	forbidden exception, Ccwl	1: check CCWL, CWL wiring, signal contact is in
		or Cwl as OFF state	normally closed state (ON).
			2: if you do not use the drive disable function, you
			can set the pn006 parameter to mask it.
AL-16	Reset	The input voltage is too	1: uses monitor mode to see if the input voltage is
		high or the braking load	beyond normal range
		rate is above 85%	2: reduces start stop frequency
			3: external regenerative braking resistor (remove
			internal braking resistor, not parallel)
			4: increases deceleration time
			5:Are the power and resistance values of the
			regenerative resistors set correctly?
			6: replace more power motors and drives
AL-17	Power up	Improper encoder output	To reset the Pn016, the Pn017 parameter value must
	again	frequency division.	satisfy DA/DB>=1.
AL-18	Power up	The current driver model	Refer to the drive and motor model adapter to
	again	does not support the set	reset the Pn001.
		motor type	
AL-19	Reset	Power module	The temperature of the power module is too high
		overheating	and the heating is serious. It needs to be cooled
			for a period of time. Otherwise, the service life
			of the module will be reduced.
AL-20	Power up	The same function is	View all SigIn ports and remove duplicate ports.
	again	assigned to multiple	
		input ports	
AL-21	Power up	Memory contents are	1: initializes the parameters and looks at the
	again	completely destroyed	situation. If alarm occurs again frequently, replace
			servo amplifier.
			2: internal chip damage, replace servo amplifier.
AL-22	Power up	Watchdog timer overflow	1: power on again. Replace the servo amplifier if it
	again		occurs again and again.
			2: external interference is too large to reduce
			external interference.
·	1	1	

	_		
AL-23	Power up	Current zero drift	1: re power, if repeated, the current sampling loop
	again	compensation anomaly	components may be damaged.
AL-24	Power up	Programmable logic chip	1: power on again. Replace the servo amplifier if it
	again	exception	occurs again and again.
			2: external interference is too large to reduce
			external interference.
AL-25	Power up	DSP chip abnormalities	Power up again. Replace the servo amplifier if it
	again		occurs again and again
AL-26	Power up	Unsupported origin	Refer to appendix F, reset Pn034, Pn035.
	again	regression combination	
AL-27	Power up	The external braking	Replace the external brake resistor.
	again	resistance is less than the	
		drive type, allowing	
		minimum resistance.	
AL-28	Power up	The regenerative rate of	1 enter the Dn013 and check the brake electric
	again	the braking resistor is	regenerative load rate.
		more than the Pn090	
		setting, and the	
		resistance surface has a	
		higher temperature rise.	
		Must be resistance to	
		cooling for more than 15	
		minutes, then power, or	
		short-term continuous re	
		power work, may lead to	
		the resistance to burn,	
		causing fire.	
AL-29	Power up	Servo short duration	1 enter the Dn004 to see if the input voltage is
	again	brake abnormal	too high.
			2 wiring off or no braking resistance
AL-31	Power up	Absolute encoder battery	The battery voltage is less than 3.1 + 0.1V. Please
	again	low voltage warning	replace the battery immediately, otherwise you will
			lose multi circle data.
AL-32	Power up	Absolute encoder battery	A case where the battery voltage is below 2.5 + 0.2V

	again	voltage is too low	has occurred. Check if the battery is loose and the
	5		battery voltage is normal. Please perform the Fn015
			operation and reset the multi circle information to
			relieve the alarm.
AL-33	Power up	Absolute encoder multi	During servo or power off, the multi loop counter
	again	turn count overflow	counts beyond the count boundary. Perform the
	-		Fn015 operation to reset the multi loop
			information. If there is no need for multiple loop
			overflow detection in the actual application, the
			Pn219 parameter can be set to turn off the multi
			ring overflow alarm.
AL-34	Power up	Absolute encoder count	During the power up, the motor speed is too high.
	again	error	Power up again, please.
AL-35	Power up	Absolute encoder power	When the encoder is powered on, the motor rotates
	again	error	and the speed is higher than 100r/min. When power
			is on, the motor must be in a stationary or low
			speed state.
AL-36	Power up	Absolute encoder multi	Error occurred in multi circle count. Perform the
	again	turn error	Fn015 operation to reset the multi loop information.
AL-37	Power up	Motor overheating	1 motor temperature over 110 degrees, please cool
	again		for some time.
			2 motor over use, please use a larger capacity of the
			motor
AL-38	Power up	Absolute encoder detects	No battery or battery voltage is too low, the battery is
	again	excessive speed alarm	normal and the drive does not receive the power
			supply, the motor rotates due to external
			acceleration. Please check the battery, and then
			perform the Fn015 operation to reset the multi loop
			information.
AL-41	Power up	Communication fault,	1: check whether the motor encoder connector is
	again	absolute encoder	connected to the drive.
		without response	2: check whether the motor encoder interface weld,
			short circuit or off; encoder signal wire sequence
			whether the power line is connected properly;
			encoder.

			3: encoder damage.
AL-42	Power up	Absolute encoder	1: check the motor, encoder, connector is bad
	again	communication, the	contact, encoder line is too long.
		number of errors in	2: check the encoder cable wiring, as far as possible
		succession too much	to avoid with the motor line, power line and other
			strong interference source winding, should keep a
			considerable distance.
			3: encoder interface circuit fault
			4: too much external interference, reduce external
			interference
AL-43	Power up	Absolute encoder internal	The storage cell is uninitialized or the data has been
	again	storage unit data error	corrupted. Please perform the Fn017 operation and
			re initialize the data.
AL-44	Power up	Absolute encoder	Encoder abnormal or motor running too fast
	again	frequency divider circuit	
		fault	
AL-45	Power up	Reset, absolute encoder,	Refer to AL-42 handling measures
	again	multi turn error operation,	
		error	
AL-46	Power up	Reset absolute encoder	Refer to AL-42 handling measures
	again	single turn error operation	
		error	

6.3 Other fault phenomena and treatment measures

In case the servo driver does not give an alarm, the failure conditions and treatment measures are as follows. If you still can not eliminate the abnormal situation after treatment, please contact our technical staff.

Fault	Reason	Inspection methods and treatment
phenomenon		measures
	The control power is not connected	Check the voltage between the terminals
		of the control power
	The main circuit power is not	Check the voltage between the main
	connected	power terminals
	Control line (CN2 connector) wiring	Check the installation and wiring of
	error or fall off	the CN2 connector
	The servo enable (SON) input is in the	Check that the input pin is falling off

	OFF state	ar connected to the moong position
	OFF state	or connected to the wrong position.
		Check the port input status displayed
		by Dn014;
The servo motor		You can also set the drive internal
doesn't start		enable (Pn003=1) directly
running	The torque, speed, or position of the	Check whether the input pins fall off
	input is too small to be zero or zero	or connect wrong; increase the input
		command; torque, speed or position,
		command source selection, parameter
		settings inconsistent with
		expectations
	The pulse command issued by the host	Check the input pin is off, whether the
	computer does not respond to the	terminal sequence of insanity; see
	driver	Dn006, accept the same frequency and
		pulse frequency is from the upper PC;
		check the motor is working in position
		mode and be enabled; check whether the
		SigIn port specified by Pclear and INH,
		and the signal of the state is valid
	Error specifying the input port	Check that the SigIn port function
	function number	parameter is set correctly
	System load is too large	Perform no-load JOG test to see if the
	5,500 100 15 000 1aige	drive is running properly
	Offset pulse clearing (Pclear) keeps	Check the Pclear input signal, port,
	the ON state	and wiring to see the port status of the
		Dn014 display
	Forward drive, inhibit (CCWL),	
		Check the CCWL, CWL input signals,
	reverse drive, inhibit (CWL) input	ports, and wiring to see the port status
	signal, maintain OFF status	of the Dn014 display
	Motor power line (UVW) wiring error	Check power line connection order is correct
	Servo driver fault	The driver's internal wiring board
		fault must be repaired
	Torque limit valid	Internal or external torque limit
		values (Pn008~Pn011) are valid and
		limited values are too small
	The instruction pulse frequency is	The instruction pulse input frequency
	too low	pulse input is not correct, see the
		Dn007 display; electronic gear ratio
		(Pn098 [^] Pn112) molecular denominator of
		(11030 11112) morecurat denominator of

		the ratio is too small; the instruction
		pulse input (Pn096) pulse emitted and
		PC does not match the connection order
		is wrong
	The speed control is in the zero speed	The SigIn:zero_Lock signal is the On
	clamping state	state; at the zero speed clamping level
		(Pn165) range;
The servo motor	Wiring fault of motor line	Check motor power line connection order
stops running		is correct
after an	Wiring fault of motor line	Check the encoder wiring order is
instant		correct
operation		

The seventh chapter is Modbus serial communication

7.1 Introduction to Modbus Communications

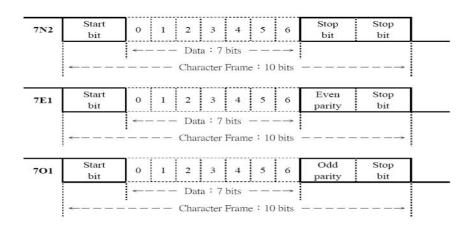
The driver has the RS-232 and RS-485 communication interface, and the user can select an interface to communicate with the driver. The communication method uses the Modbus transfer protocol, and the following communication modes can be used: ASCII (AmericanStandard Code for information interchange) mode and RTU (Remote Terminal Unit) mode (). Before communication, you must first set up communication related parameters (Pn064 $^{\rm Pn071}$).

7.1.2 Coding meaning

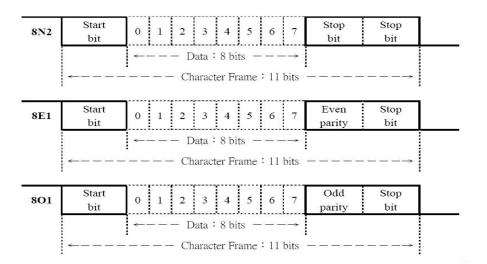
ASCII mode:

Each 8-bit data consists of two ASCII characters. For example, a 1-byte data 78H (sixteen decimal notation) is represented by the ASCII code, which contains the '7' ASCII code (37H) and the '8' ASCII code (38H).

Character symbol	'0'	'1'	ʻ2 '	·3'	' 4 '	' 5'	' 6'	'7'
Corresponding ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Character symbol	'8'	' 9'	'A'	'В'	'C'	ʻD'	'Е'	'F'
Corresponding ASCII code	38H	39H	41H	42H	43H	44H	45H	46H


ASCII numbers from 0 to 9, letters A through F, as follows:

RTU mode:


Each 8-bit data consists of two 4-bit sixteen hexadecimal data, that is, the general number of sixteen components. For example, the decimal 120 is represented by the 1-byte data of RTU as 78 H.

7.1.3 data structure

10bit character mode (for 7bit data)

11bit character mode (for 8bit data)

7.2 Communication protocol architecture

• ASCII mode

Name	Meaning	instruction
Start	Communication begins	Starting character ':' (ASCII:, 3AH)
Address	Communication address	Communication address, that is the site number of the drive. For example: a drive site number is 32, sixteen hexadecimal is 20H, Address = '2', '0', that is' 2 '=32H,' 0 '=30H
CMD	Command	The 1 byte contains 2 ASCII codes. Common commands:

		03H (read register), 06H (read individual register), 08H (diagnostic function), 10H (write multiple registers)
DATA(n-1)	Data content	N words, =2N bytes, =4N ASCII (N<=8)
DATA(0)		
LRC	Check code	The 1 byte contains 2 ASCII codes
End 1	End code 1	0DH, that is, CR
End 0	End code 0	0AH , that is LF

●RTU Mode

Name	Meaning	instruction			
Start	Communication begins	A quiescent period of at least 3.5 bytes of transmission			
		time			
	Communication address	Communication address, that is the site number of the			
Address		drive. For example, a drive site number is 32, and			
		sixteen is 20H, Address =20H			
	Command	1 bytes. Common commands: 03H (read register), 06H			
CMD		(read individual register), 08H (diagnostic function),			
		10H (write multiple registers)			
DATA(n-1)	Data content	N words, =2N bytes (N<=8)			
DATA(0)					
CRC	check code	1 bytes			
End 1	End	A quiescent period of at least 3.5 bytes of transmission			
		time			

7.3 Common command code

7.3.1 Read multiple registers

03H: read multiple registers

Example: read the 2 words at the start address 0013H from the drive on the site number "01H".

1. ASCII mode

PC - upper monitor

start		:.'	
Addres	'0'		
		'1'	
cmd	cmd		
		'3'	
Data	High	'0'	
start	position	' 0'	
address	Low	'1'	
	positon	'3'	
read num	'0'		
register	'0'		
		'0'	
		' 2'	
LRC	'E'		
		'7'	
END1(CR)		0DH	
END0(LF)		0AH	

In responser- upper monitor (OK)

start		::
Address	'0'	
	'1'	
cmd		'0'
		'3'
Data byte	S	'0'
		'4'
0013H	High	'0'
address	position	'0'
0013H	Low	'3'
content	positon	'2'
0014H	High	ʻ0 '
address	position	'0'
0014H	Low	'0'
content	positon	'A'
LRC	'B'	
	'C'	
END1(CR)	0DH	
END0(LF)		0AH

responser- upper					
monitor (Error)					
start	·?·				
Address	'0'				
	'1'				
cmd	'8'				
	' 3'				
Exception	'0'				
code	'2'				
LRC	'7'				
	'A'				
END1(CR)	0DH				
END0(LF)	0AH				

(Error) In

2. RTU mode

PC - upper monitor

Address		01H
CMD		03H
Data	High	00H

In responser- upper monitor (OK)

Address	01H
CMD	03H
Data bytes	04H

(Error) In

responserupper monitor (Frror)

(L1101)	
Address	01H
CMD	83H
Exception	02H

start	position						code	
address		13H		The	High	00H	CRC	COH
				content	position		position	
read numbe	er of	00H		of the	low	32H	CRC High	F1H
registers				0013H	position		position	
				address				
		02H		The	High	00H		
				content	position			
CRC low po	osition	35H		of the	low	0AH		
				0014H	position			
				address				
CRC High p	position	CEH		CRC low po	sition	DBH		
			-	CRC High p	osition	FBH		

7.3.2 Write single register

06H: Write single register

Description: writes a word to the register.

For example, the drive station number is 01, and the write data start address is 0013H, and the data 100 (64H) is written.

1. ASCII Mode

PC - upper monitor

start	?	
Addre	'0'	
	'1'	
cmd	'0'	
	'6'	
Data	High	' O '
start	' 0'	
addres	n	

In	respo	nser-	upper
mor	nitor	(OK)	

start		<i>::</i>
Address		'0'
		'1'
cmd		'0'
		'6'
Data	High	'0'
start positio		' 0'
addres n		

In responser-upper monitor (Error)

start	(;) :
Address	'0'
	'1'
cmd	'8'
	'6'
Exception	'0'
code	'3'

S	low	'1'
	positio	'3'
	n	
Data co	ntent	'0'
(word f	ormat)	' O '
		ʻ 6'
		' 4'
LRC		'8'
		'2'
END1(CR)		0DH
ENDO(LF)		0AH

S	low	'1'
	positio	' 3'
	n	
Data co	ntent	' O '
(word f	ormat)	'0'
		'6'
		'4'
LRC		'8'
		'2'
END1(CR)		0DH
ENDO(LF)		0AH

LRC	'7'
	'6'
END1(CR)	0DH
END0(LF)	0AH

2. RTU mode

РС –	upper	monitor
------	-------	---------

Address		01H
CMD		06H
Data	High	00H
start	position	
address	low	13H
	position	
Data content (word		00H
format)		
		64H
CRC low position		79H
CRC High position		E4H

In responser- upper monitor (OK)

Address		01H
CMD		06H
Data	High	00H
start	position	
address	low	13H
	position	
Data	F4H	00H
content		
(word	48H	64H
format)		
CRC low position		79H
CRC High position		E4H

(Error) In

responser- upper monitor (Error)

Address	01H
CMD	86H
Exception	03H
code	
CRC low	02H
position	
CRC High	61H
position	

7.3.3 Diagnosis

08H: diagnostic function

Instructions: use the sub function code 0000H to check the transmission signals between Master and Slaver. The data content can be any number.

For example, use diagnostic features for a site 01H driver.

1. ASCII Mode

In responser- upper monitor (OK)

':' start Address '0' '1' '0' cmd '8' Sub High '0' functio positio ' 0' n code n Low '0' '0' positio n '8' Data content (word format) '6' '3' ' 1' '4' LRC '0' END1(CR) 0DH END0(LF) 0AH

monitor	(OK)	
start		<i>'</i> :'
Address		'0'
		'1'
cmd		'0'
		'8'
Sub	High	'0'
functio	positio	'0'
n code	n	
	low	'0'
	positio	'0'
	n	
Data	High	'8'
content	positio	'6'
(word	n	
format)	low	'3'
	positio	' 1'
	n	
LRC		'4'
		'0'
END1(CR)		0D
		Н
END0(LF)		0A
		Н

In responserupper monitor (Error)

(Error)	
start	' :'
Address	'0'
	'1'
cmd	'8'
	'8'
Exception	'0'
code	'3'
LRC	'7'
	'4'
END1(CR)	0DH
END0(LF)	0AH

2. RTU Mode

PC – ı	upper monit	tor	-	or (OK)	
Address		01H	Address		01H
CMD		08H	CMD	CMD	
Sub	High	00H	Sub	High	00H
function	position		function	position	
code	low	00H	code	low	00H
	position			position	
Data	High	86H	Data	High	86H
content	position		content	position	
(word	低位 low	31H	(word	low	31H
format)	position		format)	position	
CRC low position		43H	CRC low position		43H
CRC High position		BFH	CRC High	position	BFH

In responser- upper

In responser-

upper monitor

(Error)

Address	01H
CMD	88H
Exception	03H
code	
low	06H
position	
CRC High	01H
position	

7.3.4 Write multiple registers

10H: writes multiple registers

Description: writes N words to a continuous register, with a maximum N of 8 (08H).

For example, write 100 (0064H) and 300 (012CH) to the station number 01, the two consecutive registers of the start address 0013H of the servo drive.

1. ASCII Mode

PC - upper monitor		Ι	n responser- u (OK	 nitor	In respo upper mo (Erro	nitor
start	<i></i>	S	tart	: ?	start	'.' ``
Address	'0'	A	ddress	'0'	Address	'0'
	'1'			'1'		'1'

cmd		'1'	cmd		'1'	cmd	'9'
		'0'			'0'		'0'
Data start	High positon	'0'	Data start address	High positon	'O'	Exception code	'0'
addres	0051001	' 0'	auuress	0051001	'0'	code	'3'
S	low positio	'1'		low positio	'1'	LRC	'6'
	n	'3'		n	'3'		'C'
Read num register		'0'	Read number of	High positon	'0'	END1(CR)	0DH
register	5	'O'	registers	0051001	'0'	END0(LF)	0AH
		'0'		low	'0'		
		'2'		positio n	'2'		
Data byt	es	'0'	LRC		'4'		
		' 4'			'1'		
0013H	High	'0'	END1(CR)		0DH		
Write data to	positon	'0'	ENDO(LF)		0AH		
0013H	low	' 6'					
	positio n	'4'					
	High	'0'					
0014H Write	positon	'1'					
data to	low	' 2'					
0014H	positio n	' C'					

'4'
'5'
0D
н
0AH

2. RTU Mode

PC - upper monitor

In responser- upper monitor (OK)

In responserupper monitor

(Error)

Address	01H	
CMD	10H	
Data	High	00H
start	positon	
address	low	13H
	positio	
	n	
Write	High	00H
number of	positon	
register	low	02H
S	positio	
	n	
Data bytes		04H
0013H	High	00H
Write	positon	
data to	低位 low	64H
0013H	positio	
	n	
0014H	High	01H
Write	positon	
data to	low	2CH
0014H	positio	

Address	01H	
CMD	10H	
Data	High	00H
start	positon	
address	low	13H
	position	
Write	High	00H
number of	positon	
register	low	02H
S	position	
CRC low po	sition	BOH
CRC High p	0DH	

Address	01H
CMD	90H
Exceptio	03H
n code	
CRC low	0CH
position	
CRC High	01H
positon	

n	
CRC low position	F3H
CRC High positon	24H

Note 1: registers are all 16 bit signed integers.

Note 2: when reading the Dn-13 parameter, the actual voltage value = read value /100.

7.3.5 Check code calculation

1. LRC check

ASCII mode uses LRC (Longitudinal, Redundancy, Check) checksum. LRC check is the sum of the calculation of Address and CMD, starting data address and data content, the sum of the result by 256 units, take the remainder (if the sum of the result is 150H, only 50H), and then calculate the complement, the final results obtained for LRC check code.

start		<i></i>
Address		'0'
		'1'
cmd		'0'
		'3'
Data start address	High	' O '
	positon	' 0'
	low	'1'
	position	'3'
Read Number of registers		' O '
		' O '
		' O '
		' 2'
LRC		'E'
		'7'
END1(CR)		0DH
END0(LF)		0AH

Example: read 2 words (word) from the 0013 address of the site 01 H servo driver.

Add the data from Address to the last data:

01 H +03H+00H+13H+00H+02H=19H,因 19H 的补码为 E7H,所以 LRC 为'E','7' 01H+03H+00H+13H+00H+02H=19H, because 19H's complement is E7H, so LRC is' E ',' 7 '

2. CRC check

Rtu mode is used CRC (Cyclical Redundancy Check) check code. The cyclic redundancy check (CRC) field is two bytes, containing a binary 16 bit value. The value of the CRC appended to the message is computed by the sending device. The receiving device re calculates the value of the CRC when the message is received, and compares the calculated result with the actual received CRC value. If the two values are not equal, they are wrong.

The CRC calculations start with a 16 bit register with a full 1., and then follow the successive 8 bit section of the message for subsequent calculations. Only 8 data bits in the character are involved in generating CRC operations, starting bits, stop bits, and parity bits, and are not involved in CRC calculations. The process of generating CRC is:

1. load a 16 bit register into sixteen hexadecimal FFFF (full 1). This is called the CRC register

2. exclusive of the first 8 bit byte of the message with the low byte of the 16 bit CRC register, which is placed in the CRC register

3. shift the CRC register to 1 bits (to the LSB direction), and MSB to zero. Extract and detect the LSB.

4. (if LSB is 0): repeat step 3 (another shift)

(if LSB is 1): XOR polynomial for the CRC register, 0xA001 (101000000000001)

5. repeat steps 3 and 4 until the 8 shift is completed. When this is done, complete operation of the 8 bit byte is completed.

6. repeat the steps 2 to 5 in the next byte of the message, continue this operation until all messages have been processed.

7. The final content in the CRC register is the CRC value.

8. when the CRC is placed on the message, the high and low byte must be exchanged. The low byte is sent first, followed by the high byte

For example, read 2 words (word) from the drive with the site number 01 H and read the start address as 0200 H address. From the Address to the last bit of data, the final content of the calculated CRC register is 0704 H, and the instruction format is as follows. Note that the 04H is transmitted in front of 07 H.

Address	01H	
CMD	03H	
Data start address	High positon	02H
auuress	low position	00H
Data length (calcu	00H	
	02H	

CRC low position	C5H
CRC high position	взн

CRC generation paradigm:

CRC values are generated in the C language below. This function requires two arguments.

unsigned char * data; // The data start address used to calculate the CRC value

unsigned char length; // Data length

This function returns the CRC value of the unsigned integer type.

unsigned int crc_chk(unsigned char * data, unsigned char length)

```
{
```

```
int i,j;
unsigned int crc_reg=oxFFFF;
 While(length- -)
 {
  Crc_ reg ^=*data++;
  for(j=0;j<8;j++)
  {
      If(crc_reg & 0x01)
      {
        crc_reg=( crc_reg >>1)^0xA001;
      }else
      {
       crc_reg = crc_reg >>1;
      }
  }
}
return crc_reg;
```

7.3.6 Exception code

}

Communication errors may occur during communications, and common error events are shown below:

Communication error event	Servo driver response method	
The data address is incorrect when you read and write	The request does not process and returns an error	
arguments;	exception code	

When writing a parameter, the number of data is	The request does not process and returns an error	
written more than the maximum or the data is not	exception code	
within the range of the parameter;		
Data transmission error or checksum code (LRC, CRC,	The data is discarded and no response is returned. The	
parity check) error	host should treat the request as a timeout state	

When the drive sends an error exception code, the command function code is added to the 80H and sent to the

ModBus master system. If it is in broadcast mode, no exception code or data is returned. The exception code is shown below:

01 H	The servo driver cannot recognize the requested function code
02 H	The requested data address is illegal
03 H	The requested data is not allowed in the servo drive (the number of read and write data exceeds the
	maximum allowable value of the drive or the write data value is not within the parameter range)
04 H	The servo drive is already executing the request, but it cannot complete the request.

7.4 Servo parameter, status information, communication address

Data address		Meaning	Explain	Operation
Hexadecimal	Decimal system			authority
0000H~00ECH	0~236	Parameter setting area	Pn000~Pn236	Read-write
			Corresponding	
			Pn000~Pn236	
0164H~016DH	356 ~ 365	Alarm recording area	In Fn000, you can view	read-only
			the corresponding	
			Sn0~Sn9	
0170H~018CH	368 ~ 396	Data monitoring area	Dn000~Dn028Correspon	write-only
			ding Dn000~Dn028	

The eighth chapter, operation and adjustment

According to the wiring diagram, after installation and connection, check the following items before power on:

▲Is the power supply terminal properly and reliable? Is the input voltage correct?

▲Is there any short circuit or earthing of the power line and motor line?

▲Is the encoder cable correct?

▲Are the drive units and motors firmly secured?

▲Is the motor shaft connected to the load at the end?

▲Is the brake resistance connection (optional) correct?

▲Is the serial communication line (optional) properly connected?

8.1 Inching operation

(1) servo enable (SON) OFF. The internal enable (Pn003=0) or external wiring control enables the OFF to be in a state. It is recommended that the CN2 control interface do not receive any control lines.

(2) switch on the circuit power, drive 5 digital tube display light, if there is an alarm, then5 decimal point has been flashing, and display alarm code AL-xx. Please check the connection.

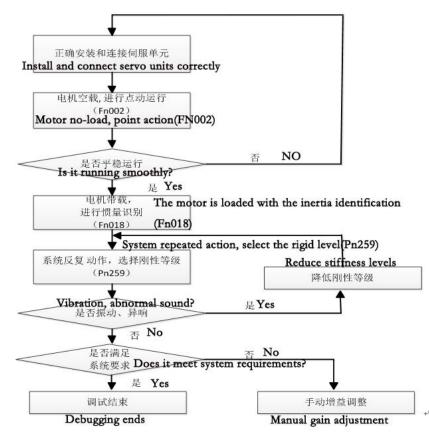
(3) confirmed that no alarm and any abnormal situation, enter the auxiliary mode Fn002 subdirectory JOG_0 (specific operation and parameter settings see Chapter third section 3.4.4 Fn002 trial operation), hold the key to reversing operation, release button, motor reducer, no electricity.

8.2 Push-button speed control

(1) servo enable (SON) OFF. The internal enable (Pn003=0) or external wiring control enables the OFF to be in a state. It is recommended that the CN2 control interface do not receive any control lines.

(2) switch on the circuit power, the driver of the 5 digital tube display light, and if there is an alarm, the decimal point has been flashing, and display alarm code AL-xx. Please check the connection.

(3) to confirm that no alarms and any exceptions have been entered into the auxiliary mode Fn002


subdirectory JOG_1 (specific operations and parameter settings, see Chapter third, section 3.4.4, Fn002, trial operation). After entering the lower directory of JOG_1, the display is shown as 0 (unit: r/min), and the motor has been energized. Through the key or key, the input motor will be running at speed, the motor will run at this speed. To exit this operation, you need to perform JOG_2 operations.

8.3 Gain tuning

Gain tuning is a function of optimizing servo response performance by adjusting servo gain parameter combination (inertia ratio, position loop gain, speed loop proportional gain, speed loop integration time, instruction filter, etc.). When servo gain is adjusted, the interaction between parameters must be taken into account, so it is necessary to balance the parameters of each gain and not to set extreme parameters.

In general, high stiffness machines can improve responsiveness by increasing servo gain. For low rigidity machines, the increase of servo gain may produce vibration and bring about negative effects. At this point, vibration can be suppressed by reducing the stiffness levels or various vibration suppression functions of the servo unit.

The general system debugging process is shown below:

8.3.1 System inertia identification

Automatic tuning refers to the identification of the load inertia during the operation of the servo to achieve the mechanical rigidity grade

(Pn259) setting requirements. In order to achieve better response performance, inertia identification must be carried out.

In the following cases, the inertia calculation may not be effective:

•Load inertia changes rapidly

Mechanical rigidity is very low

 $\ensuremath{\bullet}$ The mechanical components are not firmly connected, for example, there is a reverse clearance

•Maximum speed of less than 150 rpm and continuous low speed use

●加减速在1秒内2000转/分以下的和缓状态A slowing state of 2000 revolutions per minute in a second

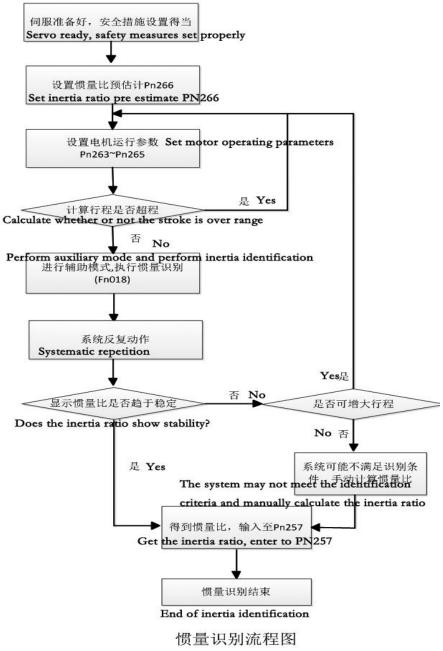
•Load rigidity is easy to produce small amplitude vibration or friction Related parameters of inertia estimation:

Pn257	Load inertia ratio	$0^{\sim}100.00$	1.00	times
Pn263◆	Inertia estimation acceleration and	$20^{\sim}500$	80	ms
	deceleration time			
Pn264◆	Inertia estimation allows maximum speed	$150^{\sim}1000$	400	r/min
Pn265◆	Inertia estimation pause interval	$0^{\sim}10000$	500	ms
Pn266◆	Inertia estimation; inertia ratio; prediction	$1.00^{\sim}20.00$	3.00	倍times
	value			

The stroke of inertia estimation: S=V*T=Pn264* (Pn263/60000). By default, the maximum approximation stroke is S=400*80/60000=0.53 turn (2500 line encoder).

The following settings must be set before starting the offline inertia estimation operation:

• Main power is in.


• Servo not enabled.

• Install limit switches using forward drive inhibit (CCWL) and reverse drive inhibit (CWL) function, Prevent accidents caused by mechanical accidents.

• When the parameters are set properly, the motor acceleration and deceleration time and running speed are estimated by inertia,

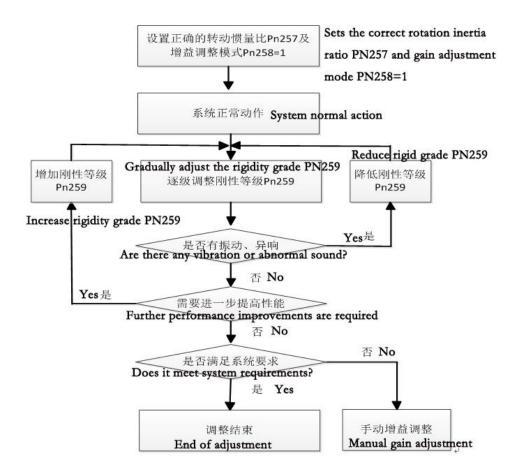
Try to avoid gentle and low speed running condition.

The general flow of inertia identification is as follows:

Flow chart of inertia identification

8.3.2 Automatic gain adjustment

For automatic gain adjustment, the mechanical rigidity setting consists of the following 21 types. In setting the gain adjustment mode (Pn258) is 1, the mechanical rigidity level (Pn259), will be based on the servo gain parameter setting table to automatically select the servo gain (position loop gain, speed loop gain, speed loop integral time constant, torque command filter time). At this point, gain parameters such as Pn115, Pn116, Pn153~P156, Pn196, and Pn197 are not valid in automatic gain adjustment mode.


Mechanical	Position	Speed loop	Velocity loop	Torque filtering
stiffness class	loop gain	gain	integral time	time
Pn259	[1/s]	[Hz]	constant [0.1ms]	[0.01ms]
0	10	10	550	220
1	15	15	500	180
2	20	20	450	150
3	30	30	300	110
4	40	40	200	60
5	50	50	160	45
6	60	60	150	40
7	85	85	100	35
8	115	115	95	30
9	120	120	91	25
10	130	140	85	22
11	150	160	60	20
12	180	200	50	15
13	195	220	40	12
14	210	250	35	10
15	230	270	30	10
16	250	300	29	10
17	270	350	27	10
18	330	400	22	10
19	380	450	19	10
20	450	500	17	10

The gain parameter setting table is as follows:

When the gain is adjusted, if the mechanical rigidity setting value is increased, the response of the servo will be improved, and the positioning time will be shortened. However, excessive gains can cause mechanical vibrations. Therefore, in case of no vibration, increase from low stiffness to level up, and the gain must remain margin to avoid critical condition.

For low load devices such as pulleys, the rigid level of the device cannot be too high, but a higher rigidity class can be set up, such as a ball screw, which is connected with a rigid load device.

The general flowchart of gain adjustment is as follows:

8.3.3 Manual gain adjustment

When manual gain adjustment is performed, set Pn258 to 0. The response characteristics of the servo unit are adjusted by the following servo gain parameters.

NO.	Name	Range of values	Default value	Unit	Apply
Pn045	Gain switching selection	$0^{\sim}5$	0	-	A11
Pn115	Position regulator gain 1	$1^{\sim}2000$	100	1/S	Р
Pn116	Position regulator gain 2	1~2000	100	1/S	Р

		1	r	1	
Pn153	Speed regulator proportional gain 1	1^{\sim} 2000	80	Hz	A11
Pn154	Speed regulator integration time	1^{\sim} 5000	150	0.1ms	A11
	constant 1				
Pn155	Speed regulator proportional gain 2	1~ 2000	80	Hz	A11
Pn156	Speed regulator integration time	1^{\sim} 5000	150	0.1ms	A11
	constant 2				
Pn196▲	Torque instruction filtering time	1~5000	40	0.01m	A11
	constant 1			S	
Pn197▲	Torque instruction filtering time	1~5000	40	0.01m	A11
	constant 2			S	

Manual gain adjustment general process is as follows:

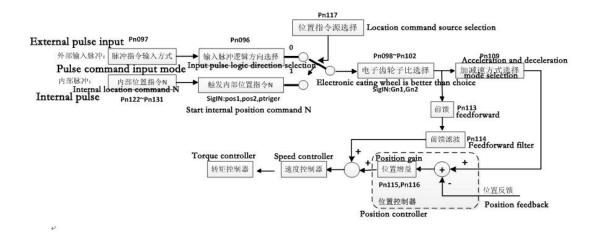
step	Content
1	Correct setting of inertia ratio Pn257. Set Pn258 to 0.
2	As long as the machine does not generate vibration, the speed ring gain (Pn153, Pn155) is increased
	as much as possible, and the speed loop integration time constant (Pn154, Pn156) is reduced.
3	Adjust the torque instruction filter time parameter (Pn196, Pn197) and place the setpoint that does
	not generate vibration.
4	Repeat the 2 and 3 steps. In the case of meeting the system requirements, reduce the speed ring gain
	properly, increase the integral time constant of the speed ring, and leave the margin.
5	The position loop gain (Pn115, Pn116) is gradually increased in the range of no vibration when the
	position is controlled.

Note 1: by default, Pn045=0, the first set of gains is valid, and there is no need to set two sets at the same time.

Note 2: parameter tuning can be carried out on the basis of proper reference to the gain parameter setting table.

8.3.4 Jitter suppression method

When servo gain is too high, motor spindle wobble may occur. To avoid jitter, you can do as follows:


• When the position is complete, the servo gain is reduced properly and the vibration suppression function parameter (Pn139 Pn141) is used.

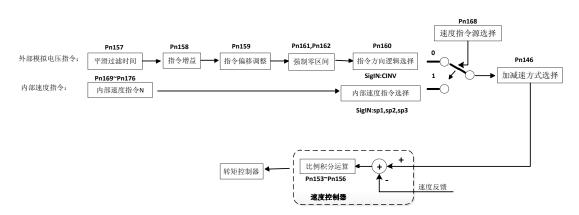
- Set the correct load inertia ratio. For large inertia load or high rigidity and fast response device, too small speed loop time integration constant is easy to cause positioning overshoot or swing.
- ullet Using the gain switching function (Appendix A), the jitter band gain is reduced.
- Appropriately increase the torque instruction filter time parameter (Pn196, Pn197).
- Regulation speed feedback compensation (Pn183). The greater the speed feedback compensation, the faster the response, but the more noise the motor.

The ninth chapter, servo unit control structure and example

9.1 Position control example

9.1.1 Position control structure diagram

9.1.2 Example of position control


External pulse direction in the form of input 20K frequency of the positive pulse, the number of transmission 15 thousand, electronic gear ratio 3:1, plus and deceleration time 60ms. The parameters you need to set:

```
Pn097=0,Pn096=0,Pn117=0,Pn098=3,Pn109=1,Pn110=60.
```

If an external port enable motor is not used, the Pn003=1 can be set internally with an automatic enable motor. When the external input pulse, the motor counter clockwise rotation 4.5 times (2500 line encoder).

9.2 Example of speed control

9.2.1 Speed control structure diagram

9.2.2 Example of speed control

Adopt internal speed control, drive internal enable, motor clockwise rotation, speed of 600rpm, using S curve acceleration and deceleration, Ts=10ms, Ta=30ms, Td=100ms. Parameters to set: Pn002=1,Pn003=1, Pn146=1, Pn147=10, Pn148=30, Pn149=100, Pn168=1, Pn169= -600.

9.3 Torque control example

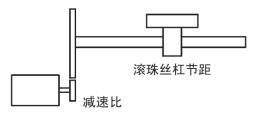
9.3.1 Torque control structure diagram

9.3.2 Example of torque control

The external analog voltage output 0.5V, torque reached 15% of the rated torque, when the motor is light load, the maximum speed limit is 1800rpm, the acceleration and deceleration time is 500ms, the internal automatic enable work.

Set parameters as follows: Pn002=0,Pn003=1,Pn186=1,Pn187=500,Pn198=1800, Pn204=0. Note: under the condition of no load or light load, the actual torque can not reach the input torque command, and the motor runs at the highest limit speed.

9.4 Electronic gear ratio calculation


An electronic gear function is a function of the amount of movement of 1 input pulse instructions. The 1 input pulse command is also called the 1 instruction unit". Through the adjustment of the electronic gear ratio, the instruction controller can be controlled without regard to the reduction ratio of the machine or the number of lines of the encoder.

1 Determine machine specifications

The elements associated with the electronic gear are as follows:

- Reduction ratio
- Ball screw pitch
- Pulley diameter, etc.

Ball screw pitch

Reduction ratio

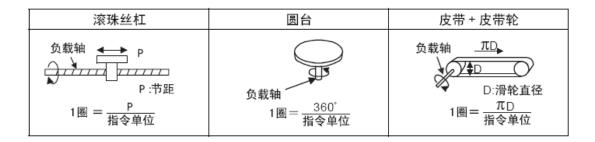
2 Servo motor encoder pulse number

Speed fbk sel	Single loop pulse number
Incremental encoder	10000
17 bit absolute encoder	131072

3 Decision instruction unit

The instruction unit is the smallest unit indicating the moving position information of the load. The unit of instruction should be considered in terms of machine specifications and positioning accuracy. Commonly used physical units can be used as the smallest instruction units, such as 0.01mm, 0.001mm, 0.1 degrees, etc..

4 According to the instruction unit, the amount of load movement in the 1 turns of the load shaft is calculated.


Load shaft rotates 1 cycles of load movement (instruction unit) = load axis rotates 1 cycles of load movement / instruction unit

Example: ball screw pitch 6mm, instruction unit 0.001mm, 6/0.001=6000 (instruction unit).

ball screw

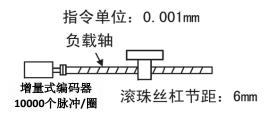
circular truncated cone

Belt + pulley

5 Find out the ratio of the electronic gear.

It is assumed that the reduction ratio of the motor shaft and the load shaft is (m/n), that is, the servo motor rotates m circle and the load shaft rotates n.

Electronic gear ratio = number of pulses per unit of rotation / (load shaft rotation, 1 turns of load movement (instruction units)) Xm/n

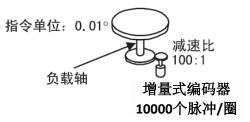

6 Setting parameters

After dividing the electronic gear, it is set as user parameter.

Electronic gear ratio (after reduction) =Pn098/Pn102

9.5 Example of electronic gear ratio

9.5.1 ball screw

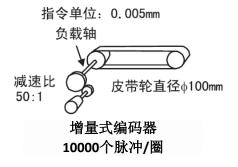


Load shaft rotates 1 cycles of load movement (instruction unit) =6mm/0.001mm=6000

Electronic gear ratio =10000/6000=5/3.

Set Pn098=5, Pn102=3.

9.5.2 circular truncated cone


Load shaft rotates 1 cycles of load movement (instruction unit) =360 degrees /0.01 degrees =36000.

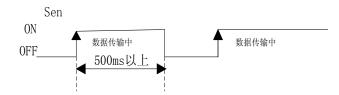
Electronic gear ratio =10000/36000*100=250/9.

Pn098=250, Pn102=6.

Set Pn098=250, Pn102=6.

9.5.3 Belt + pulley

Load shaft rotates 1 cycles of load movement (instruction unit) =3.14*100/0.005=62800.

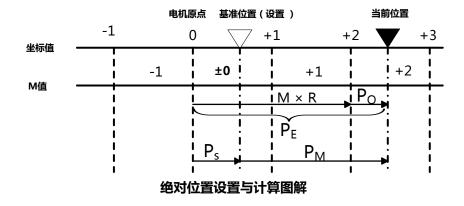

Electronic gear ratio =10000/62800*50=1250/157.

Set Pn098=1250, Pn102=157.

The tenth chapter, the use of absolute servo unit

10.1 Absolute data output mode

Can not wait on the can, the computer can through the port SigIn:Sen signal, request to read encoder single loop multi ring data information. Read the following sequence:



• Please do not rotate the motor when you read single or multi coil data.

 In the absence of malfunction of encoder communications, normal data will be output, otherwise no response will be made.

• During the servo transmission encoder data, if the Sen signal is changed from OFF to ON again, the response will not be made until the data transmission is complete.

• During servo sending encoder data information, if the servo enable signal son or internal enable is valid, it will not respond until the data transmission is complete.

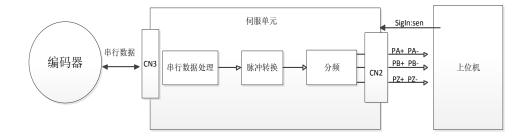
The final absolute value data, PM, is derived from the following formula: $PE=~M~\times~R~+~PO$

PM = PE - Ps

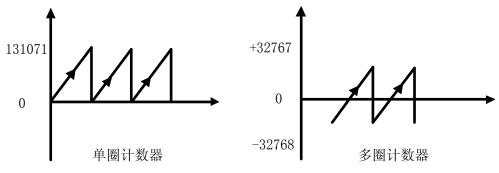
Among them:

 $\ensuremath{\text{PE}}\xspace$ the current value read from the encoder

M: multi turn volume data


R: encoder rotates the number of pulses in 1 turns (values after frequency division)

PO: the number of initial increments (absolute position within a single loop)

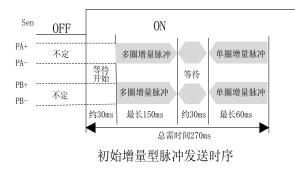

PS: the offset of the reference position relative to the origin of the motor. The initial increment is saved and managed by the host computer

 $\ensuremath{\texttt{PM}}\xspace$ the current position value that a user needs relative to the base position

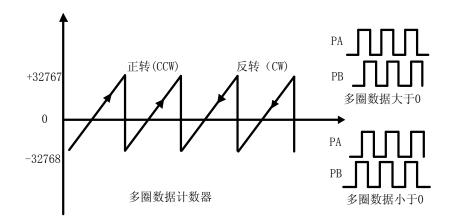
10.2 Absolute data transceiver timing

Absolute servo unit data information transceiver frame

Single	loop	counter
--------	------	---------



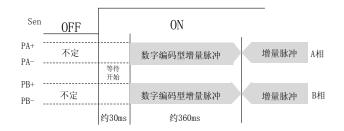
	0 1		· · ·
servo motor	Single loop	Multi loop	Over time operation
	data output	data output	
	range	range	
It is equipped with	$0^{\sim}131071$	-32768	Multiring data is higher than the forward direction
17 bit absolute		~+32767	limit value (+32767): multi loop data = -32768
encoder			Multi ring data is lower than the reverse direction
			limit value (-32768); multi loop data = $+32767$


Signal name	state	Signal content		
PA+ PA-	Transceiver state	Initial increment pulse		
	Normal state	Delta pulse		
PB+ PB-	Transceiver state	Initial increment pulse		
	Normal state	Delta pulse		
PZ+ PZ-	Transceiver state	Low level		
	Normal state	Origin pulse		

When Pn218=0, incremental send single circle and multi circle absolute position data information. It is recommended to read multiple times to get the correct absolute position.

A single loop increment pulse is a pulse equal to the pulse speed at which the 1500r/min frequency rotates from the origin position of the motor shaft to the position of the current motor shaft. Like the usual incremental pulse, the single loop position pulse is output by frequency divider inside the servo unit. The number of multi loop pulse increments represents the multi ring position data, which is not output by the divider. Example: in a multi loop increment pulse, the number of pulses received is +300, representing the motor axis in the 300th loop.

Due to the range of multi loop data $-32768^{\sim}32767$, when the multi ring data is positive, the motor rotates counterclockwise (CCW); when it is negative, the motor rotates clockwise (CW). By default, when the multi loop data is positive, the PA advances PB, whereas the PA lags PB. The range of the single loop data is $0^{\sim}131071$, and the PA is advanced PB.



Note: if the Pn018 encoder AB phase logic takes the inverse parameter set to 1, then the PA and PB phases are reversed, and the multi loop data symbols are inverted.

Pn218=1 sends single loop and multi circle absolute position data in the form of pulse digital encoding. It is recommended to read multiple times to get the correct absolute position.

Signal name	state	Signal content		
PA+ PA-	Transceiver state	Digitally coded delta pulse		
	Normal state	Delta pulse		
PB+ PB-	Transceiver state	Digitally coded delta pulse		
	Normal state	Delta pulse		
PZ+ PZ-	Transceiver state	Low level		
	Normal state	Origin pulse		

 $(0^{1}5->0^{F})$. Digital coded delta pulse: at about 30ms, the servo will send several pulses, and the number of pulses will be considered a sixteen digit number $(0^{1}5->0^{F})$.

数字编码型增量脉冲发送时序

	等待 开始	发送	空闲	发送	空闲		发送	空闲	发送	空闲		
		5ms	25ms	约	30ms		约	30ms	约	30ms		
			读取	i	读取			读取		读取 ▼		时间
0	ns 30)ms	60)ms	90)ms 33	Om	s 36	Oms	s 39	Oms	

数字编码型增量脉冲帧格式

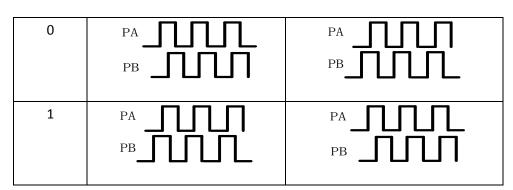
N1~N4	$N5^{\sim}$	N8				N9~N12
16 bit, multi ring data (signed	16	16 bit single loop data				16 bit CRC checksum (unsigned
integer)	(unsigned integer)					integer)

When sending a pulse, the pulse increments for each send are sent within $0^{\sim}15$ and completed within 5ms. When the Sen signal of the host computer is changed from off to on, the timing is started. Considering the fixed response delay of a few milliseconds, the upper computer must select the appropriate time point to read the number of pulse changes (sixteen hex). For example, in 30ms, the servo sends 3 pulses, and the upper computer can read the pulse increments at 50ms, with the number of 3 representing the number 3. After reading, wait for tens of milliseconds, in the 80ms read second pulse increments, and so on, and so on.

For example

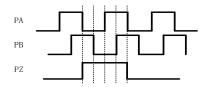
次序	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12
Pulse	0	3	14	8	1	0	10	5	4	13	14	15
number												
	High	0x03	Low 0	xe8	High	0x10	Low OxA	15	CRC low	v Ox4D	CRC hig	gh OxEF
Result	Multi	cir	cle	data:	a: Single		oop	data:	CRC:EF4	1DH		
	03e8H	=+1000			10A5H=4261							

Data frame (8bits)	03H	E8H	10H	A5H	4DH	EFH


Among them: CRC polynomial using Modbus protocol polynomial: 0xA001, its algorithm and code have been detailed in the seventh chapter Modbus communication function.

In addition, the host computer can also read the absolute position information (Dn025^{Dn028}) by using MODBUS serial communication.

10.3 ABZ pulse frequency division output


• By setting the PnO18 parameter, the phase relation of the AB pulse signal can be changed.

Pn018	ccw	CW

- By setting the Pn217 parameter, the number of pulses per turn output can be changed.
- Phase relation of Z pulse

The Z signal is aligned with the edge of the A or B signal and lasts 4 pulses of time.

10.4 Initialization of absolute encoder

When the following happens, the absolute encoder must be initialized by the Fn015 operation:

- •Initially start the mechanical equipment
- Encoder battery low voltage alarm
- •Internal fault alarm of encoder occurs
- ullet To set the absolute encoder's multi circle data to 0

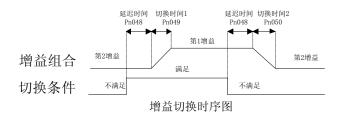
When the absolute encoder alarm, and without the need to reset the multi ring data information, Fn016 operations can be carried out to remove the alarm on the encoder.

10.5 Installation of absolute encoder batteries

When the Pn216 is set to 1, the absolute encoder is used in many circles. In order to save the position data of the absolute encoder, the battery unit needs to be installed. Install the battery unit on either side of the upper or servo unit. Please do not set up the battery unit on the upper and servo units. If the battery is set on both sides at the same time, the circuit will be formed, which is very dangerous. The battery must be between $3.2V^4$. 5V, the high voltage will damage the encoder, and the low voltage will produce a low voltage alarm. In general, please use 3.6V 2000amH lithium battery.

Before you replace the battery, just switch on the power. Do not enable the motor to operate. If you remove the battery in the power control OFF servo unit (including after remove the encoder cable), the absolute value of the encoder data will be lost, at this time, to carry out the Fn015 operation, reset multi ring data information.

When replacing the battery, please pay attention to the polarity of the battery and the serial number of the driver. If polarity is reversed, the encoder will be damaged.


After replacing the battery, if the drive has an encoder alarm, please perform the Fn016 operation, reset the encoder alarm information, and then switch on the power drive again.

appendix

	First gain		Second gain
parameter	Name	parameter	Name
Pn153	Speed regulator proportional	Pn155	Speed regulator proportional gain 2
	gain 1		
Pn154	Speed regulator integration time	Pn156	Speed regulator integration time constant
	constant 1		2
Pn192	Torque Q shaft regulator	Pn194	Torque Q shaft regulator proportional gain
	proportional gain 1		2
Pn193	Torque Q axis regulator integration	Pn195	Torque Q axis regulator integration time
	time constant 1		constant 2
Pn196	Torque Q axis filter time constant 1	Pn197	Torque Q axis filter time constant 2
Pn115	Position regulator gain 1	Pn116	Position regulator gain 2

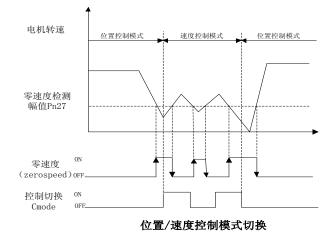
Appendix A gain switching

Note: when the gain is switched, it must be in the proper control mode, and the condition of setting parameters Pn0465 and Pn046 is appropriate to satisfy the gain switching condition and switch.

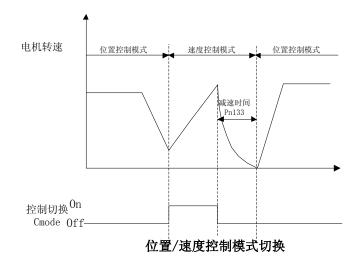
Appendix B control mode switching

B.1 Position / speed control mode switching

Using the control switch (Cmode), the position control mode and the speed control mode can be switched by inputting the control port SigIn contact.


The relationship between the Cmode and the control mode is as follows.

Cmode	control mode
OFF	Position control mode
ON	Speed control mode

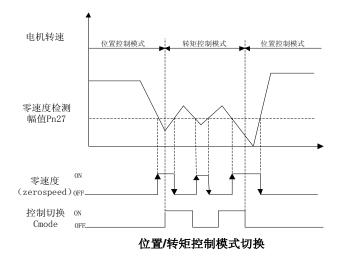

The control mode can be switched at zero speed state. But to be on the safe side, switch on when the servo motor is stopped. When the position control mode is switched to speed control mode, the hold pulse will be cleared. Before enabling the motor, please determine the control mode to be entered (the status of the Cmode pin). There are two modes of switching when the motor is enabled. The timing diagram is as follows:

▲Pn132=0:

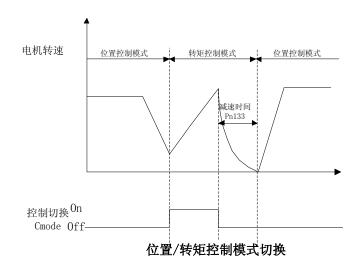
Only the zero speed state, switching signal change, mode switching is effective; if not in the zero velocity state, changed switching signal, then the signal into the zero velocity state, not mode switching.

▲Pn132=1:

B.2 Position / torque control mode switching


Using the control switch (Cmode), the position control mode and the torque control mode can be switched by inputting the control port SigIn contact. The relationship between the Cmode and the control mode is as follows.

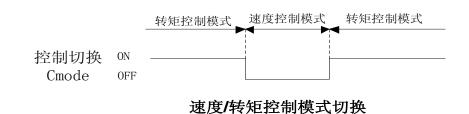
Cmode control mode	
OFF	Position control mode
ON	转Torque control mode


The control mode can be switched at zero speed state. But to be on the safe side, switch on when the servo motor is stopped. When switching from position control mode to torque control mode, the hold pulse will be cleared. There are two modes of switching when the motor is enabled. The timing diagram is as follows:

▲Pn132=0:

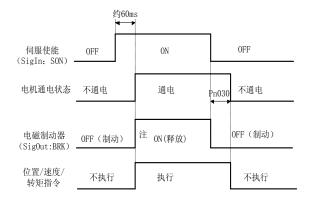
Only the zero speed state, switching signal change, mode switching is effective; if not in the zero velocity state, changed switching signal, then the signal into the zero velocity state, not mode switching.

▲Pn132=1:



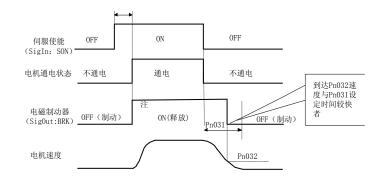
B.3 Speed / torque control mode switching

The use of control switching (Cmode) allows the speed control mode and the torque control mode to be switched through the input control port SigIn contact. The relationship between the Cmode and the control mode is as follows.


Cmode	control mode
OFF	Speed control mode
ON	Torque control mode

Whenever you can control the mode of switching, the timing diagram of the switch is as follows:

Appendix C servo drive operation timing


C.1 ON/OFF timing of motors at rest

Note 1: when using the electromagnetic braking function, the servo break enable mode Pn004 must be set to 2.

Note 2: when the motor speed is less than the parameter Pn029, the timing sequence of the electromagnetic brake.

C.2 ON/OFF timing of motor operation

Note 1: when using the electromagnetic braking function, the servo break enable mode Pn004 must be set to 2 Note 2: when the motor speed is not less than the parameter Pn029 setting value, the electromagnetic brake sequence of action.

C.3 Timing of alarm when servo ON

Note 1: when using the electromagnetic braking function, the servo break enable mode Pn004 must be set to 2

Appendix D electromagnetic brake

An electromagnetic brake (holding a brake, an electric brake) used to lock a vertical or tilting table attached to the motor to prevent the bench from falling after the servo power is lost. To achieve this function, you must buy a motor with a brake. The brakes can only be used to maintain the table and must never be used to slow or stop motion.

Using the electromagnetic brake, you must set the Pn004 parameter to 2 and specify the function at the SigOut port. According to the rotation speed of the motor and the setting value of the parameter Pn029, the driver selects the corresponding braking sequence and performs the electromagnetic braking function. See the appendix C for specific timing.

Appendix E regenerative braking resistor

When the servo motor running in generator mode, power flow by the motor drive, known as renewable electricity. The following usage will cause the servo motor to operate in the generator (regenerative) mode: (1) the servo motor moves from deceleration to stop during acceleration and deceleration operation.

- (2) when applied to vertical loads.
- (3) the servo motor is operated by the load end.

The regeneration power absorbed by the main loop filter capacitor drive, but renewable electricity is excessive, the filter capacitor can not afford, must use recycled to consume the excess electric resistance can be recycled. When the regenerative energy is too large, the internal braking resistance can not be absorbed completely, resulting in the occurrence of AL-03 (overvoltage), AL-08 (excessive temperature) or AL-16 (braking average power overload) and other alarms. According to the actual application, increase the acceleration and deceleration time, if still alarm, need external braking resistor, enhance the braking effect. External braking resistance range 40~200 ohm, power 1000~50W, the resistance is small, the greater the braking current, required braking resistance greater power, braking energy is larger, but the resistance is too low may cause damage to the drive, the test method is resistance from large to small, drive does not appear again until the alarm, running at the same time. The temperature is not too high to brake resistance. When the external braking resistor is removed, the internal regenerative braking resistor is removed. Because the resistance in the consumption of renewable power regeneration, will produce more than 100 C high temperature, please be careful, in connection with resistance wires use heat regenerative non flammable wire, and confirm the regeneration without touching anything resistance.

Note: when using regenerative resistor, if the alarm is generated, please cut off the power supply and cools down for a period of time. Due to a faulty regeneration transistor, the regenerative resistor is unusually hot and may cause a fire. Make sure to match the brake resistance according to the application.

Appendix F origin regression

F1. 1 Origin regression operation step

1:Reference point

Start the origin regression function, according to the first rate for the origin and the reference point, you can use the SigIn input terminal REF, CCWL or CWL as a reference point, you can also Z pulse as the reference point, can choose the forward or reverse direction finding.

2: find the origin

When the reference point is found, and then the second speed is used to find the origin, the Z or the pulse can be continued forward or backward, or the reference point can be used as the origin.

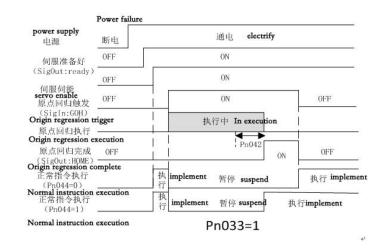
In order to avoid the mechanical impact caused by the drastic change of speed, the parameter Pn040 and Pn041 can be added to reduce the speed during the execution of the origin regression. The origin is found with the offset pulse as the actual origin, and the offset is: Pn036*10000+Pn037.

The origin regression reference point model (Pn034) and the origin model (Pn035) have the following combinations:

Rn034 Pn035	0	1	2	3	4	5	6
0	√ (A)	√ (B)	√ (A)	√ (B)	×	×	×
1	√ (C)	√ (D)	×	×	×	×	×
2	√ (E)	√ (F)	×	×	√ (G)	√ (H)	√ (I)

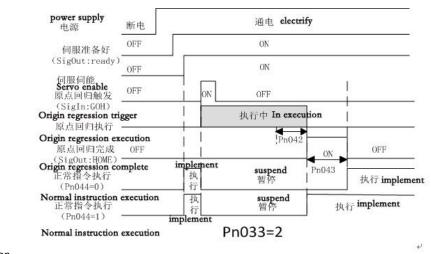
The \checkmark said the origin of the model combination will perform properly, \times said the origin of the model does not perform combination .

F1. 2 Origin regression trigger timing


Pn)33	Origin regression trigger mode	0: T	urn off the origin regression function
			1:	riggered by the GOH level input by the SigIn
			2:	GOH edge triggered by SigIn input
			3:	Power up automatically once

• Level triggered (Pn033=1)

After servo enable, the input terminal GOH triggers the origin return execution, and the GOH starts the return operation on the top side, stops the normal instruction execution, and the lower edge ends the return operation. GOH keeps ON, and when the execution is complete, the position offset is cleared (position control), and the output terminal HOME becomes ON. Until GOH becomes OFF, then HOME becomes OFF.


When Pn044=0, when the origin return is complete, wait for the GOH signal to change to OFF and then execute the instruction. During the waiting period, the motor stays at the origin and does not accept the instruction. When the Pn044=1 is returned, the command is executed immediately after the origin return is completed. In origin return execution, if the servo is enabled, the son is enabled, any alarm is generated, and the GOH is advanced to OFF, the origin regression function is aborted and the output terminal HOME is not operative. In

addition, if the son effective, no alarm, return in the execution and no complete, even if the edge triggered (Pn033=2) signal repetition effectively, the drive will return after completion of the current operation, then the trigger signal edge detection.

Edge triggered (Pn033=2)

After servo enable, the input terminal GOH rises, triggers the origin return execution, and pauses the normal

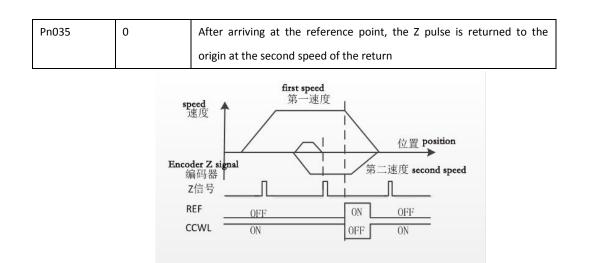
instruction execution

• Power on automatic execution (Pn033=3)

This function is only performed once the power is on, the servo is first valid, and then the origin return is not repeated. Each time the power is turned on, the drive automatically performs an origin return operation. With this feature, you can save an input terminal GOH.

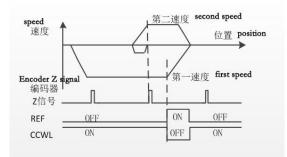
Power Supply 电源	断电	通电 elect	rify	
伺服准备好	OFF	ON		
(SigOut:ready) 伺服使能	OFF	ON		
Servo enable		执行中 In execut	ion	
原点回归执行 Origin regression 原点回归完成	execution OFF	Pn042	. ON .	OFF
(SigOut:HOME) Origin regression 正常指令执行 (Pn044=0)	complete	suspend 暫停	Pn043	」 执行 In execution
Normal instructio 正常指令执行 (Pn044=1)	n execution	suspend 暫停		行 execution
Normal instruction	on execution	Pn033=3		

F1.3 Origin regression, combination model, time series

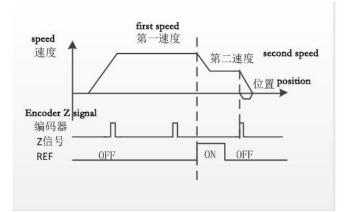

Pn034	Origin	0:The REF is turned (triggered by the rising edge) as the reference	0~6	0
	regression	point		
	reference point	1: reverse, find REF (rising edge trigger) as reference point		
	mode	2: is turning to CCWL (triggered by the falling edge) as the reference		
		point		
		3: reverse for CWL (falling edge triggered) for reference		
		4: is looking for the Z pulse as the reference point		
		5: reverses the Z pulse for reference points		
		6: absolute zero as reference point (valid only for absolute encoder)		
Pn035	Origin	0: back to the Z pulse as the origin	0~2	0
	regression	1: look for the Z pulse as the origin		
	origin mode	2: take the rising edge of reference point as the origin directly		

Note 1: by combining parameter Pn034 and Pn035, there are 8 available origin return methods.

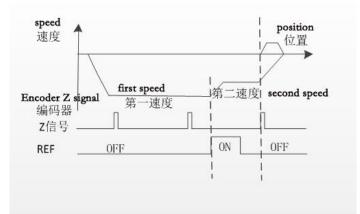
Note 2: when the origin returns operation, the positive / reverse drive disable is turned off until the regression operation is exited.


(A)Pn034=0 or 2,Pn035=0

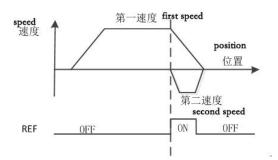
parameter	Setting	instruction
Pn034	0 or 2	After the origin regression starts, the first speed is turned to REF (rising
		edge triggered) or CCWL (triggered by the falling edge) as the reference
		point


(B)Pn034=1 或 3,Pn035=0

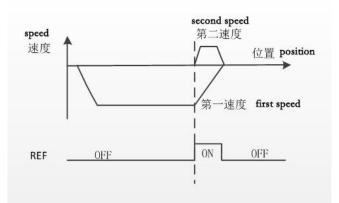
parameter	Setting	instruction
Pn034	1 or 3	After the origin regression is started, the first speed inversion is used to find the
		REF (rising edge triggered) or CWL (triggered by the falling edge) as the reference
		point
Pn035	0	After arriving at the reference point, the Z pulse is returned to the origin at the
		second speed of the return


(C)Pn034=0,Pn035=1

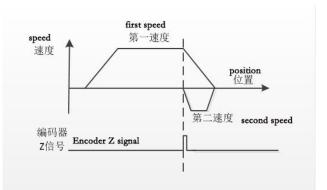
parameter	Setting	instruction			
Pn034	0	fter the origin of the regression start, the first speed is transferred to			
		the REF (rising edge trigger) as the reference point			
Pn035	1	After arriving at the reference point, forward the Z pulse at the return			
		second speed as the origin			


(D)Pn034=1,Pn035=1

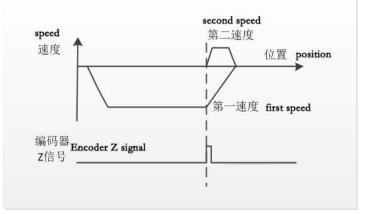
parameter	Setting	instruction			
Pn034 1		After the origin regression starts, the REF (rising edge trigger) is used as the reference point according to the first speed inversion of the regression			
Pn035	1	After arriving at the reference point, forward the Z pulse at the return second speed as the origin			


(E)Pn034=0,Pn035=2

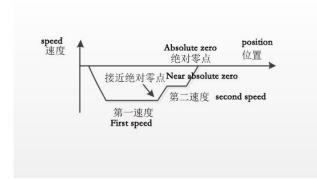
parameter	Setting	instruction
Pn034	0	After the origin of the regression start, the first speed is transferred to the REF (rising edge trigger) as the reference point
Pn035	2	When the reference point is reached, the reference point is used as the origin point


(F)Pn034=1,Pn035=2

parameter	Setting	instruction				
Pn034	1	After the origin regression starts, the REF (rising edge trigger) is used as the reference point according to the first speed inversion of the regression				
Pn035	2	When the reference point is reached, the reference point is used as the origin point				


(G)Pn034=4,Pn035=2

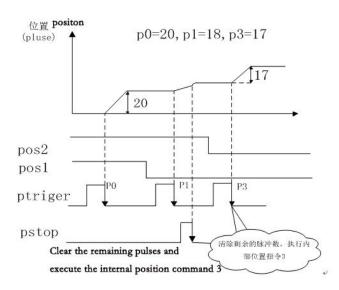
parameter	Setting	instruction			
Pn034	4	After the origin regression starts, the Z pulse is turned to the reference point according to the first speed of the regression			
Pn035	2	When the reference point is reached, the reference point is used as the origin point			


(H)Pn034=5,Pn035=2

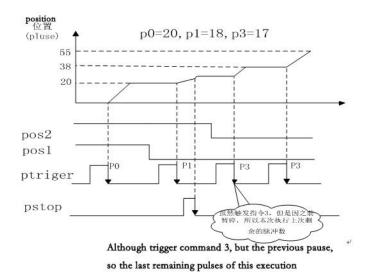
parameter	Setting	instruction				
Pn034	5	After the origin regression is started, the Z pulse is selected as the				
		reference point according to the first speed reversal of the regression				
Pn035	2	When the reference point is reached, the reference point is used a				
		the origin point				

(I)Pn034=6,Pn035=2

parameter	Setting	instruction				
Pn034	6	The absolute zero of the absolute motor is used as the refere				
		point				
Pn035	2	When the reference point is reached, the reference point is used as				
		the origin point				


Appendix G internal position control

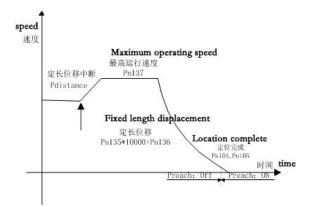
For internal position control, you need to set Pn002=2, Pn117=1, and set the corresponding running parameters in Pn118~Pn131. The SigIn port pos1, pos2 selects the internal location command N:


Pos2	Pos1	NInternal location command N
Off	Off	Internal location command 0
Off	On	Internal location command 1
On	Off	Internal location command 2
On	On	Internal location command 3

The use of internal position control, first determine the input port pos1, pos2 state, choose the corresponding internal position command, and then trigger input signal ptriger, each ptriger (OFF->ON) decreased when the driver reads the internal position command N, accumulated to the remaining instruction pulse number, to continue the implementation of the corresponding operation.

If you set the Pn118=0, want to pause the motor running in the location process, when the trigger input pstop signal, motor deceleration stop, then drive automatically remove the remaining position command, when the input port of the ptriger trigger, the driver will be based on the current state of pos1, pos2, executive position instruction, please refer to the following sequence diagram:

If you set the Pn118=1, suspension of motor running in the location process, when the trigger signal input port pstop, motor deceleration stop, when the input port of the ptriger trigger, the motor will continue to walk the remaining position command, arrived at the input port pstop trigger issued before the target position, please refer to the following sequence diagram:



Appendix H fixed length displacement interruption

The parameters of fixed length displacement are as follows:

Pn134	Fixed length displacement direction	0~1	0		Р
Pn135	Fixed length shift height	0~9999	0	Tens of thousands	Р
Pn136	Fixed length shift low	0~9999	100	individual	Р

Pn137	Maximum running speed at fixed length	5~5000	200	r/min	Р
Pn138	Fixed length locking release	0~1	1		Ρ

Fixed length displacement discontinuity refers to the motor is in stop mode or in position control mode, the SigIn:Pdistance input signal edge effectively, the motor will speed according to the original direction (Pn134) mobile specific distance (Pn135*10000+Pn136). During the execution of fixed displacement,

The servo is in a fixed length shift lock position and will ignore other position instructions (including Pdistance and Punlock trigger signals). When the fixed length is completed

After the distance meets the position completion condition (Pn104, Pn105), the SigOut: Preach port signal output changes to On state. Thereafter, the drive performs the corresponding unlock mode in accordance with the setting of the lock release (Pn138) method. If Pn138 is 0, the position response is immediately answered after completion of the position; if Pn138 is 1, the lock state is unlocked only after the input port SigIn:Punlock signal edge is valid, in response to the position command. The port signals of SigIn:Pdistance, Punlock and SigOut:Preach should be set in Pn052[^]Pn063 and other parameters.

Note 1: position completion parameter Pn104, the greater the Pn105 setting, the earlier the Preach signal becomes the On state, but does not affect the final positioning accuracy in the locked state. If the preach signal changes to the On state, a smaller fixed displacement error is obtained, which reduces the Pn104, Pn105 parameter values, or waits for the motor to remain stationary.

Note 2: position command acceleration / deceleration (Pn109) must be set to 0.